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With the ongoing progress in protein crystallography and NMR,
structure-based drug design is adopting increasing importance in
the search for new drugs. Modeling starts from the 3D structure of a
target protein in order to construct molecules which are
complementary to a binding site, in their geometry as well as in the
pattern of their physicochemical properties around the molecules.
The rational design process is accompanied by 3D structure
determinations of different ligand-protein complexes. Most often,
significantly improved binding affinities of the ligands are observed
after several cycles of 3D structure determinations, the design of
compounds with appropriate structural modifications, synthesis, and
testing of the new drug candidates. As an alternative,
pharmacophore models are derived from the 3D structures of active
analogs. A risk with lead structure optimization by structure-based
design is the neglect of other important biological properties, such as
bioavailability and metabolic stability. Recent applications of
structure-based design, as well as success stories in the search for
new, potent and selective HIV protease inhibitors, thrombin
inhibitors, neuraminidase inhibitors and integrin receptor
antagonists, are reviewed.

Introduction
Traditionally, leads for new drugs resulted from the
accidental observation of the biological effects of natural
products and from screening organic compounds;
serendipity played an important role in drug research.
Later, the structures of endogenous effector molecules, such
as neurotransmitters and hormones, were taken as
templates to design new receptor agonists and antagonists.
As early as 1973, a structure-based design of protein ligands
was performed. Beddell and Goodford utilized the 3D
structure of the 2,3-diphosphoglycerate (2,3-DPG) complex
of hemoglobin to derive simple aromatic dialdehydes which
mimicked the function of 2,3-DPG as an allosteric effector
molecule. Another early example was the structure-based
design of trimethoprim analogs with significantly improved
affinities to DHFR [1]. However, neither the hemoglobin
ligands nor the trimethoprim analogs could be optimized to
become drugs for human therapy.

The first success story in structure-based design was the
antihypertensive drug, captopril (1, Capoten, Lopirin,
Squibb, now Bristol-Myers Squibb; Figure 1), an
angiotensin-converting enzyme (ACE) inhibitor. Its
structure was derived in a rational manner from a binding
site model, using the 3D information of the complex of
benzylsuccinate with the closely related zinc proteinase
carboxypeptidase A [2••].

With the ongoing progress in protein crystallography and
multidimensional NMR studies, the 3D structures of many
important proteins, especially enzymes, have been
determined (commented on the Web site, http://www.
biochem.ucl.ac.uk/ bsm/pdbsum/ [3••]). This information led
to the structure-based design of many other enzyme
inhibitors, most of which are still in preclinical or clinical
development, but some have already been introduced into
human therapy, eg, the carboanhydrase inhibitor,
dorzolamide (2, Trusopt, Merck & Co; Figure 1), an
antiglaucoma agent [4•,5•], and the HIV protease inhibitors,
saquinavir (3, Invirase, Hoffmann-La Roche), indinavir (4,
Crixivan, Merck & Co), ritonavir (5, Norvir, Abbott
Laboratories) and nelfinavir (6, Viracept, Agouron
Pharmaceuticals; Figure 1) [6•].

All major drug companies currently apply structure-based
design as an important technique in their search for new
drugs. Some start-up companies, such as Agouron Pharma-
ceuticals, Vertex [7••], and several others, exclusively select
biological targets where structure-based and computer-
aided drug design can be applied in order to increase the
rate of success and to speed up the lead finding and
optimization cycles.

Protein 3D structure-based drug design
The most important factors for a favorable interaction
between a drug and its specific biological target, most often
a protein, are a perfect geometric fit of the ligand to the
binding site, both being in low-energy conformations, a
correspondence of the molecular electrostatic potentials, the
formation of charged and/or neutral hydrogen bonds
between functional groups, and hydrophobic interactions
between lipophilic surfaces [8••]. Whilst the hydrophobic
interactions always increase binding affinities (sometimes
reducing aqueous solubility), the contribution of hydrogen
bonds to the overall free binding energy depends on the
balance of the desolvation energies and the energies of the
newly formed hydrogen bonds. Changing a single
functionality of a ligand may have very complex
consequences [8••,9••,10••].

In the design cycle, the information from the 3D structure of
the target protein or, even better, from ligand-protein
complexes, is used to design new ligands with improved
binding affinities. After synthesis and testing, the under-
lying hypotheses on the structure-activity relationships are
modified and a new design cycle starts. In optimal cases
(compare with the later section on thrombin inhibitors),
ligands with nanomolar affinities result after several design
cycles. A weak point of the structure-based ligand design is
the fact that other important properties of a drug are
neglected; the mere optimization of ligand affinities may
lead to compounds with insufficient bioavailability or
metabolic stability.

The focus of this review is not so much on a comprehensive
description of all of the different applications of structure-
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Captopril (1) was developed in the 1970s, using a binding site model derived from the 3D structure of the benzylsuccinate-carboxypeptidase A
complex. The carboanhydrase inhibitor, dorzolamide (2, Merck & Co), is the first drug for human therapy (market launch 1995), which resulted from
a mere structure-based design; the HIV-1 protease inhibitors, saquinavir (3), indinavir (4), ritonavir (5) and nelfinavir (6), followed in the years 1995
to 1997.

based design (compare eg, [9••,11•]), but on a presentation
of several typical, and successful, examples from recent
literature. An excellent comprehensive review [9••] and
three books [5•,10••,11•] on structure-based design have
been published within the last two years; some other
reviews [12,13•,14,15•,16•] discuss important aspects of
structure-based design. Table 1 gives an overview of recent
applications of these techniques in the rational design of
enzyme inhibitors and other protein ligands, including
some examples of structure-based design without
knowledge of the protein 3D structure (compare with the
later section on drug design based on ligand 3D structures).

HIV-1 protease inhibitors
HIV-1 protease is one of the most important proteins
involved in the replication of the AIDS virus. It processes
two of the three gene products of the AIDS virus to
functionally active proteins. Inactivation of HIV protease by
site-directed mutagenesis leads to non-infectious HIV
mutants. In the few years since the first 3D structures of HIV
protease were published in 1989, the inhibitors, 3-6, were
developed by structure-based design, preclinically and
clinically tested, and introduced into human therapy (Figure
1) [6•].

Several fortunate circumstances came together to achieve
this success. Research on AIDS therapy had much publicity
and was generously supported by governmental funds. For
many years, drug companies had searched for inhibitors of
the aspartic protease, renin [5•,10••,11••]. As soon as the 3D
structure of HIV protease [58•] became available, several
companies shifted their activities to this new, rewarding

target. The first HIV protease inhibitors had structural
similarity to the peptide sequence of the substrate, bearing
the statin partial structure, >N-CH(R)-CH(OH)-CH2-N<,
instead of a scissile amide bond. The second generation
inhibitors, 3-6, are true peptido-mimetics, with fewer amide
bonds. However, some structural resemblance to the peptide
leads can still be recognized. In addition, they all contain
elements of the statin partial structure.

Research carried out by DuPont Merck demonstrates an
example of a straightforward rational design, starting from a
pharmacophore hypothesis and a 3D database search for
analogs bearing this pharmacophore (Figure 2) [19••,59••].
Compound 7 was a hit, which suggested that a methoxy
group could replace a structural water molecule, the so-called
'flap water', in the HIV protease complex. The initial concept
for the design of a nonpeptide inhibitor was structure 8.
Analogs 9 and 10 (Figure 2) followed as leads, providing
additional hydrogen bonds between the inhibitor and the
enzyme; P1, P1', P2 and P2' are benzyl, substituted benzyl and
naphth-2-yl-methyl groups. Several clinical candidates with
nanomolar affinities and favorable pharmacokinetic
properties resulted from this approach [19••].

A serious problem in AIDS therapy is the large genetic
variability of the virus, leading to approximately one error
per 10,000 base pairs per virus replication cycle. Thus, the
emergence of resistance is a serious problem and limits the
therapeutic usefulness of such drugs. One strategy to solve
the problem, the combined application of two or even three
drugs with different mechanisms of action, is already
employed. Another attractive approach is the development
of AIDS drugs which are less sensitive to the development
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Table 1.  Some recent applications of structure-based drug
design.

LIGANDS AND PROTEINS REFERENCES
PROTEIN 3D STRUCTURE-BASED DESIGN

Aspartic proteinase inhibitors
Renin 5•,10••,11•
HIV protease 2••,4•,5•,6•,9••,

10••,11•,13•,15•,
17,18,19••,20, 21

Serine proteinase inhibitors
Thrombin 5•,9••,10••,11•,

22-24,25••
Factor Xa 11•,23, 26,27•
Elastase 2••,5•,9••,10••,

28
β-Lactamase 5•,9••

Cysteine proteinase inhibitors 9••,29•,30••
Matrix metalloproteinase inhibitors 9••,10••,11•,31,

32•,33•
Other enzyme inhibitors

Aldose reductase 11•,34,35
Carbonic anhydrase 4•,5•,9••,10••,

13•
Dihydrofolate reductase 1,10••
Glycolytic enzymes 1,11•
Neuraminidase (sialidase) 5•,9••,11•,13•,

15•,
35,36•,37,38•

Protein kinases 11•
Purine nucleoside
phosphorylase

2••,9••,11•,13•,
39••,40•,41,42•

Reverse transcriptase 5•,11•,43
Thymidylate synthase 2••,4•,10••,13•,

41,44,45
Various parasitic proteinases 29•,46

Other protein ligands
FKBP-binding protein 9••,47
Rhinoviral coat proteins 11•

PHARMACOPHORE MODEL-DERIVED AND

LIGAND 3D STRUCTURE-BASED DESIGN

Metalloproteinase inhibitors
Angiotensin-converting
enzyme

2••,10••,13•,48

Neutral endopeptidase 24.11 2••,13•,48
Endothelin-converting enzyme 49,50

Other enzyme inhibitors
Protein tyrosine kinases 51•
HIV-1 integrase 11•,52

Receptor antagonists
Integrin receptors 53-55,56•,57

of viral resistance because the ligand interacts with the
protein backbone and the catalytic aspartates which form
the invariant parts of the protease. An interesting
application of this concept resulted from research at DuPont
Merck [60,61]. Out of a total of 14 hydrogen bonds in the
complex of the inhibitor, 11, to HIV-1 protease (Figure 2),
eight interactions are to backbone -NH- and >C=O groups,
and four are to the catalytic aspartate side chains of the HIV
protease. In addition, there are numerous favorable van-der-
Waals contacts between the aromatic rings and the
hydrophobic parts of the binding site. Inhibitors of this type

are highly active against wild-type HIV and maintain the
same, or even improved, levels of potency against a range of
HIV mutant strains with resistance to a wide variety of other
HIV protease inhibitors [60]. Due to the good steric fit and
the excellent complementarity, the six-membered cyclic
urea, 11, has a picomolar affinity to HIV protease [61].

Thrombin inhibitors
Several aspects of structure-based and computer-aided drug
research can be illustrated by the search for potent, selective
and bioavailable thrombin inhibitors. Thrombin plays a
central role in blood coagulation, by mediating the cleavage of
fibrinogen to fibrin which together with blood platelets and
erythrocytes results in the formation of an insoluble clot. This
physiological process is desirable in wound healing, but is
life-threatening in stroke, cardiac insult and other diseases
with an increased tendency to blood coagulation.

Although the first thrombin inhibitors were derived from
the structures of different substrates by classical strategies,
all recent efforts are based on the thrombin 3D structure
[5•,9••,10••,11•,22-24,25••]. Scientists at Merck & Co started
with a natural product which was isolated from the marine
sponge Theonella. Cyclotheonamide (12) [22,24] is a cyclic
peptide with a Pro-Arg sequence and a β-diketone moiety
(Figure 3), which readily forms a hemiketal with the
hydroxyl group of the catalytically active Ser-195 of
thrombin [62]. A first lead structure, 13 (Figure 3) [24,63],
including several of these structural elements in a much
simpler molecule, was not only very active but also highly
selective, compared to its action on the homologous serine
protease, trypsin. Removal of the β-diketone partial
structure led to a significant reduction in biological activity
which was, nevertheless, acceptable because it could be
compensated by other structural variations. Analog 14 is a
noncovalent inhibitor and, in addition, its low molecular
weight made it a valuable lead for analogs with oral
bioavailability [63]. In the next step of lead structure
optimization, combinatorial chemistry was applied. Amide
formation with 200 different organic acids, selected from a
total of 8,000 candidate molecules, gave, within a few
months, the hydroxyfluorene carbonamide, 15 [24,64 ], as
the most promising analog, with almost no oral activity in
the rat, but excellent bioavailability in the dog (Figure 3).
However, the development of 15 was discontinued. In the
next step, a systematic search for alternative P1 elements
was performed, which resulted in several highly active 2-
amino-pyridyl and non-basic analogs [65,66]. The
replacement of proline by a pyridone ring system, a
structural modification which had already proved
successful in the design of elastase inhibitors
[2••,5•,9••,10••], led to the inhibitor, 16 [67-69]. The 2-
amino-6-methylpyridine analog, 17 [69], is a chemically
stable, selective, subnanomolar thrombin inhibitor with
good oral bioavailability; in contrast to many other analogs,
it contains no chiral center.

Research scientists from the Korean company, LG Chemical,
started their project from the observation that in certain
series of thrombin inhibitors the introduction of an
additional amino group into the amidine reduces biological
activity, whereas in others, the so-called TAPAP series,
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Figure 2.
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Cyclic urea HIV protease inhibitors resulted from a pharmacophore hypothesis (upper left). A first lead, 7, was discovered by a 3D database search.
The inhibitors, 8-10, where P1, P1', P2 and P2' are different aralkyl groups, were intermediates in the design of the picomolar inhibitor, 11.

affinity as well as selectivity against trypsin were
significantly enhanced [70a,70b]. Correspondingly, the
conversion of the amidine, 18, into the amidrazone, 19,
increases the thrombin affinity by about two orders of
magnitude, whereas trypsin affinity is reduced by a factor of
4 to 5 (Figure 4), resulting in a 600-fold increase of thrombin
selectivity [70a,70b].

A very interesting de novo design of thrombin inhibitors was
realized by Ulrike Obst and Francois Diederich at the ETH
in Zurich, Switzerland. They began with a rigid bicyclic core
structure, accessible via 1,3-dipolar cyclo addition. The first

lead structure, 20 (Figure 4), showed micromolar affinity to
thrombin but insufficient selectivity. In the next design
cycle, an enantiomeric phenyl-substituted analog, instead of
the benzyl-substituted compound, showed even better
inhibitory activity. This serendipitous discovery resulted
from two synthetic shortcuts: firstly, the phenyl analog was
planned as a more easily accessible reference compound and
secondly, the compounds were synthesized and tested as
racemates. A third design cycle yielded the nanomolar,
highly selective thrombin inhibitor, 21 (Figure 4) [71••].
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Figure 3.
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The partial structure 12 of cyclotheonamide served as a starting point for the stepwise development of the thrombin inhibitors, 13-17. Whereas 13
still possesses most of the structural features of this partial structure, 14 and 15 lack the α-keto carbonamide part. The final optimization products,
compound 16 and the orally active inhibitor 17, are no longer related to the original lead structure.

Figure 4.
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The conversion of the TAPAP-type thrombin inhibitor, 18, into its amidrazone analog, 19, significantly increased the thrombin affinity and the
selectivity versus trypsin. The bicyclic thrombin inhibitor, 20, resulted from a de novo design; optimization in two design cycles yielded the
nanomolar inhibitor, 21.

Neuraminidase inhibitors
In contrast to the common cold, influenza is a serious,
potentially deadly disease. Between 1918 and 1919, the
'Spanish flu' killed 22 million people, ie, twice as many as
the number of victims of the First World War. Even
nowadays, influenza is one of the ten most common causes
of death in the US, killing about 20,000 persons per year. To
date, no efficient protection or treatment against new strains
of the influenza virus are available. Thus, there is always the
latent danger of a new pandemic.

Neuraminidase, which is also known as sialidase, is an
essential influenza viral coat enzyme. It cleaves sialic acid
from the carbohydrate side chains at the surface of the cells,
thus enabling the virus to penetrate the polar outer cell
surfaces of the respiratory tract. In 1983, the determination
of the 3D structure of neuraminidase provided, for the first
time, a target for the structure-based design of active anti-
influenza agents. In an elegant study, Mark von Itzstein
(Monash University, Australia) investigated the binding site
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of the protein and determined interaction energies with
different probes [72••] using the computer program, GRID.
He predicted that the introduction of basic groups, such as
-NH2 or -C(=NH)NH2, into the relatively weak inhibitor,
Neu5Ac2en, should significantly improve inhibitory
activities. This is indeed the case: the neuraminidase
inhibitor, 22, is about five orders of magnitude more active
than its 4-unsubstituted analog, Neu5Ac2en [35,36•,37,
38•,72••,73]. The binding mode of 22 (Figure 5) shows
interactions between the new amidinium group and two
glutamate side chains. Zanamivir (22) is orally inactive but
can be applied as a nasal spray. It is now under broad
clinical investigation and the first clinical results look
promising, despite a relatively short duration of action and
the evolution of resistant strains after in vitro selection. Of
greatest importance is the need for relatively early
application of the drug, preferably as soon as possible after
the first symptoms of illness are observed.

Usually, one should expect that a drug such as zanamivir
could not be improved upon. Research by Gilead Sciences,
however, has proved otherwise. The scientists there started
from the observation that the typical glycerol side chain does
not contribute to affinity in the simple aromatic analogs, 23a
and 23b; its introduction even destroys biological activity [74].
From modeling results, it was expected that the synthetically

easily-accessible carbocyclic analog, 24, should be more active
than its isomer, 25; however, the opposite result was obtained.
Another surprising observation was the fact that 3-alkoxy
substitution produced highly active analogs. Starting with
small alkyl groups, an optimal inhibitory activity was
observed for the branched pent-3-yl analog, 26, GS-4071
[75••]. As compared to zanamivir, GS-4071 has an identical
binding mode, but the pockets which accommodate the
glycerol side chain of 22 and the pentyl group of 26 look very
different. Whereas the carboxylate group of Glu-276 forms
two hydrogen bonds to the glycerol hydroxyl groups of 22, it
is forced to orient this pocket outwards in the neuraminidase
complex of 26; side chain methylene groups of Arg-224 and
Glu-276, as well as the side chains of Ile-222 and Ala-246, form
a perfect hydrophobic pocket - a serendipitous discovery and
a gift of mother nature to kill influenza viruses!. The ethyl
ester prodrug, 27, GS-4104, has good oral bioavailability and
is in clinical development in collaboration with Hoffmann-
La Roche. The speed of the development of this new,
promising drug is remarkable: Gilead commenced the
rational design in 1994, with first leads obtained in early
1995, and the inhibitor, GS-4071, in late 1995; GS-4104 was
developed in March 1996. During preclinical investigations,
the cooperation contract with Hoffmann-La Roche was
signed and clinical investigations began in mid-1997.

Figure 5.
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The introduction of a guanidino group into the weakly active neuraminidase inhibitor, Neu5Ac2en, led to an increase of inhibitory activity by
a factor of 10,000; zanamivir (22), originated at Monash University and later developed at Biota, is in clinical development with Glaxo
Wellcome. Aromatic analogs, 23a and 23b, gave the first hint that a removal or replacement of the glycerol side chain could produce active
analogs. The carbocyclic Neu5Ac2en analogs, 24 and 25, show significantly different biological activities. Optimization of the alkoxy residue
produced a nanomolar inhibitor, 26, of neuraminidase; its prodrug, 27, is in clinical development.
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Drug design based on ligand 3D structures
Sometimes, only the 3D structures of enzymes or receptor
ligands are known, especially in the case of agonists or
antagonists of membrane-embedded receptors. It is beyond
the scope of this review to discuss the different modeling
approaches which use 2D or 3D structures of ligands to
design new analogs with improved properties
[2••,10••,76••]. In certain cases, a straightforward design
process starts from conformationally restricted natural
receptor ligands, such as from polypeptides or proteins.
Under such fortunate circumstances, the success rate is
comparable to that of 'real' structure-based design, as is
demonstrated by the example given below.

The design of selective integrin receptor
ligands
Besides the G protein-coupled receptors, which are the
biological targets of neurotransmitters and several non-

peptide and most peptide hormones, there are the integrin
receptors, which are another large and therapeutically
significant group of membrane-embedded receptors. They
mediate the aggregation of cells, such as thrombocytes
[53,57], or the adherence of cells to the extracellular matrix
[54,55,56•]. All integrin receptors are made up of an α-chain
and a β-chain. Due to several different α- and β-chains, a
multitude of combinations result. Some of these receptors,
namely the GPIIb/IIIa (α2bβ3) receptor and the vitronectin
(αvβ3) receptor, already play an important role in the search
for new drugs.

Whereas 3D structures of these receptors are still
unavailable, the binding motifs of the natural ligands are
well known. They all contain an RGD motif, ie, an Arg-Gly-
Asp sequence in a certain 3D conformation. The NMR-
spectroscopic investigation of diastereomeric cyclic
pentapeptides showed significant differences in their

Figure 6.
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N
H

N

O

OH

O

O

N

N

CH3

             30b
(SmithKline Beecham)
Ki α2bβ3 > 100,000 nM
Ki αvβ3  = 9,200 nM

N
H

N

O

OH

O

O

N

CH3

NH

    31  SB-214857
(SmithKline Beecham)
Ki α2bβ3 = 2.5 nM
Ki αvβ3  = 10,340 nM

N
H

N

N
H

N

O

OH

O

O CH3

N

CH3

     32  SB-223245
(SmithKline Beecham)
Ki α2bβ3 = 30,000 nM
Ki αvβ3  = 2 nM

The peptidomimetic α2bβ3 receptor antagonist, 28, was derived from the 3D structure of a cyclic RGD peptide; the basic side chain of Arg, the amide
carbonyl of Gly, and the Asp of the RGD motif can still be recognized. The position of the amidine group in 29a and 29b and the presence or
absence of the nitrogen atom in 30a and 30b produce significantly different receptor selectivities; the α2bβ3 -selective receptor antagonist, 31, and
the αvβ3-selective receptor antagonist, 32, were derived from these observations. The analogs, 31 and 32, differ in their selectivity by nearly eight
orders of magnitude.



Structure-based design  Kubinyi 11

binding affinities [56•]. Whereas cyclo-(Arg-Gly-Asp-Phe-D-
Val), RGDFv (v = D-Val), is a high-affinity ligand of the
GPIIb/IIIa receptor (Ki = 2 nM), its isomer, RGDfV (f = D-
Phe), binds with high specificity to the αvβ3 receptor (Ki α2bβ3

= 42,000 nM; Ki αvβ3 = 10 nM) [56 ,77]. NMR studies and
biological results indicated that an extended conformation
of the RGD motif produces α2bβ3 selectivity, whereas a turn
around the Gly, ie, a slightly bent conformation, is
responsible for αvβ3 selectivity. The benzodiazepine, 28
(Figure 6), was derived from modeling studies, comparing
cyclic peptides with peptidomimetics. It contains the
essential structural features of the RGD motif in an extended
conformation; correspondingly, it is a high-affinity ligand
for the GPIIb/IIIa receptor.

In accordance to the different conformations of the model
peptides, cyclo-RGDFv and cyclo-RGDfV, the isomers, 29a
and 29b (meta- and para-amidine groups) and 30a and 30b
(pyridyl and phenyl substituents), show significantly
different receptor specificities [77]. Further structural
variation produced the α2bβ3-selective receptor antagonist, 31
[78], and the αvβ3-selective receptor antagonist, 32 [77]; the
selectivities of these two analogs differ by nearly eight
orders of magnitude (Figure 6).

Conclusions
In rational drug design, several basic assumptions are made.
First of all, the analogs within a series are supposed to act
via the same biological mechanism, a precondition which
sometimes is not fulfilled. Isosteric replacement of atoms or
groups is performed with the expectation that the resulting
effects are more or less obvious. The isosteric replacement of
atoms may have a significant but hardly predictable effect
on the biological activities. In some cases, conformational
restrictions may stabilize the bioactive conformation, while
for other structures some additional energy may be required
to adopt such a conformation. For ligands causing an
allosteric effect, such as receptor agonists, biological activity
cannot be expected to be a simple function of the binding
affinity. Finally, the overall affinity of a drug is by no means
only a function of its enthalpic interactions. Entropy plays
an additional, important role.

Pharmacological testing of compounds has shifted from
animal to in vitro models. Whilst there are unquestionable
advantages caused by this development, some major
problems can also arise. Many diseases have multifactorial
causes which cannot be tested in a simple in vitro system.
Absorption, distribution, metabolism and excretion of drug
candidates are investigated in only a few compounds and
thus, structural optimization often neglects these factors.
Some side-effects of drugs can only be observed in animals
but not in in vitro models.

Ligand design is not drug design! Many companies have
learned a painful lesson in this respect. Poor bioavailability
resulting from peptide-like structures with too many polar
groups, or from too many hydrophobic groups in the
molecule, killed off many drug candidates which were

highly active in vitro but inactive in cell systems and in vivo.
To avoid such problems, increasing efforts are now being
made to consider ADME (absorption, distribution,
metabolism, excretion) parameters in the early phases of
lead optimization. Simple rules are applied, as well as
screening tests for bioavailability, eg, cell culture models for
intestinal absorption and blood-brain barrier permeation.
Microsomal and liver cell preparations are used to predict
drug metabolism in different species, and short term toxicity
models to extrapolate toxic side-effects.

In recent years, the paradigms of drug discovery have
changed significantly. Due to its interdisciplinary character,
involving chemistry, molecular biology, biochemistry,
pharmacology, toxicology, and medicine, drug research is
almost exclusively performed in industry. Even small
venture capital companies, who give evidence that drug
research and development can be done in a university-like
environment, either grow to become larger companies, such
as Agouron and Vertex, or they are absorbed by major
competitors. Today, the pharmaceutical industry reacts
rapidly to new developments. All companies, worldwide,
have already shifted, or are going to shift, a larger part of
their capacities from classical chemistry to automated
syntheses of combinatorial libraries, from classical design to
structure-based and computer-assisted methods, from in
vivo and small-scale in vitro screening to faster, fully
automated, high-throughput screening. Cooperations and
mergers of companies have led to a concentration in drug
research which will continue in the future.

Despite the enormous efforts of drug companies, there has
been a steady decline in the number of drugs introduced
into human therapy, from approximately 60 to 70 new
chemical entities (NCE) per year, in the decade between
1970 and 1979, to about 50 NCEs per year, between 1980 and
1989, and 38 to 44 in the years between 1990 and 1995; with
a slight increase observed very recently, ie, 52 in 1996 and 56
in 1997 [79•]. In parallel, the costs of drug research and
development increased to about 300-350 million US$ per
new drug. Every additional year of drug development is a
waste of resources, with money being spent and revenue
lost due to late marketing and patent expiry. Thus, time
becomes an important factor in drug development. As the
first clinical trials determine the potential of a new drug,
most companies attempt to arrive at this stage faster than
before. Several drug candidates are developed in parallel, in
an effort to avoid the failure of a whole program if a single
compound gives a negative result in its first application to
humans. Phase II trials are now more carefully planned, to
avoid serious problems in phase III, the most time- and cost-
consuming phase in drug development.

In the future, the success of drug companies will depend on
their size, on the skill and motivation of their coworkers and
on the flexibility of their organization. Those companies,
which adapt their strategies of research in an appropriate
manner, will have a better chance to discover and develop
new, valuable drugs.
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