Validation and Predictivity of QSAR Models

Hugo Kubinyi
University of Heidelberg, Germany
E-Mail kubinyi@t-online.de
http://home.t-online.de/home/kubinyi
15th EURO-QSAR Symposium
Istanbul, Turkey, Sept. 2004

Validation of QSAR Models

Statistical Parameters
- r, s and F values, confidence intervals
- Topliss criteria
- number of tested and included variables
- Hansch-Unger criteria
- meaningful parameters, statistical significance,
 Ockham’s razor, biophysical model
- Crossvalidation: Q^2 and s_{PRESS} values
 (Bootstrapping)
- Lateral Validation
- Y scrambling
- External Predictions
A Common Situation

A chemist synthesizes about 30 compounds.
The biologist determines the activity values.
Both ask the chemoinformatician to derive a QSAR model.
The chemoinformatician loads 1500 variables (e.g. from the program DRAGON, Roberto Todeschini) and derives a QSAR model, containing only a few variables, which meets all statistical criteria.
Chemist, biologist and chemoinformatician publish the results. Everybody is happy.

The Selwood Data Set

n = 31 compounds and k = 53 independent variables.
Theoretically, there are:

53 one-variable models,
1,378 two-variable models,
23,426 three-variable models,
292,825 four-variable models,
.....,
22,957,480 six-variable models,
....., in total
7,160,260,814,092,303 regression models,
containing one to 29 variables,
selected from 53 X-variables.
The 53 X Variables of the Selwood Data Set

ATCH1 - ATCH10 = partial atomic charges
DIPV_X, DIPV_Y and DIPV_Z = dipole vectors
DIPMOM = dipole moment
ESDL1 - ESDL10 = electrophilic superdelocalizability
NSDL1 - NSDL10 = nucleophilic superdelocalizability
VDWVOL = van der Waals volume
SURF_A = surface area
MOFI_X, MOFI_Y and MOFI_Z = moments of inertia
PEAX_X, PEAX_Y and PEAX_Z = ellipsoid axes
MOL_WT = molecular weight
S8_1DX, S8_1DY and S8_1DZ = substituent dimensions
S8_1CX, S8_1CY and S8_1CZ = substituent centers
LOGP = partition coefficient
M_PNT = melting point
SUM_F and SUM_R = sums of the F and R constants

Ockham's Razor - Keep Things Simple!

Pluralitas non est ponenda sine necessitate
(= avoid complexity if not necessary)
Questions

Can we derive „good“ (statistically valid) models: yes
Do our models have internal predictivity (Q² values): yes
Are these models „better“ than models from scrambled or random data (y, x, y and x): yes
Are 53 X variables too many to select from: no, fine
Can our models predict a test set (r²pred value): not at all
Is there a relationship between internal and external predictivity: by no means

Results of PLS and Regression Analyses

a) PLS, all variables (5 components)
 \[r = 0.929; s = 0.335; F = 31.58 \]
 \[Q^2 = 0.279; sPRESS = 0.768 \]

b) Regression (best 3-variable model)
 \[r = 0.849; s = 0.460; F = 23.27 \]
 \[Q^2 = 0.647; sPRESS = 0.518 \]

c) PLS, reduced variable set (5 components)
 \[r = 0.909; s = 0.376; F = 23.91 \]
 \[Q^2 = 0.671; sPRESS = 0.519 \]
Y Scrambling - Random Permutations of Y Values

will y vs. y correlations disturb the result?

99% $r^2 < 0.20$

95% $r^2 < 0.12$

Scrambling and Random Y and X Values

1000 runs for each group, best models.

F = 23.3 (best 3-variable model)

original model new models

below F value

<table>
<thead>
<tr>
<th>Trial 1</th>
<th>2</th>
<th>3</th>
<th>y</th>
<th>scr</th>
<th>y</th>
<th>rnd</th>
<th>x</th>
<th>scr</th>
<th>x</th>
<th>rnd</th>
<th>y+x</th>
<th>scr</th>
<th>y+x</th>
<th>rnd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
The Real Situation

A chemist prepares some 20 compounds.

The biologist determines the activity values.

They both ask the chemoinformatician to derive a QSAR model.

The resulting model does not contain more than four variables, is selected from about fifty variables and is validated by all statistical criteria, including LOO cross-validation and y scrambling.

How good is the internal predictivity, how good is the external predictivity for a test set of 10 compounds?
University of Heidelberg

Training Sets, Internal Predictivity (LOO)

1000 runs for each group.

New model selected for every run = 1.9 billion runs

External vs. Internal Predictivity

\[\text{Training Sets, Internal Predictivity (LOO)} \]

- Q^2 > 0.6
- Q^2 > 0.5
- Q^2 > 0

\[\text{External vs. Internal Predictivity} \]

\[\text{Q}^2 \text{-pred} \]

\[\text{Q}^2 \]

\[\begin{array}{c}
\text{r}^2_{\text{pred}} \\
\text{Q}^2
\end{array} \]

\[\begin{array}{c}
0 \\
0.2 \\
0.4 \\
0.6 \\
0.8 \\
1
\end{array} \]

\[\begin{array}{c}
0 \\
0.2 \\
0.4 \\
0.6 \\
0.8 \\
1
\end{array} \]
External vs. Internal Predictivity

The „Kubinyi Paradox“

J. H. van Drie, Curr. Pharm. Des. 9, 1649-1664 (2003);

The "best fit" models are not the best ones for prediction!

Test set (n = 10) predictions from best training set models (n = 21)

red area: 56 models (out of 1000)

The "best fit" models are not the best ones for prediction!
Answers to Our Questions

1) We can derive "good" (statistically valid) models
2) The models have "good" internal predictivity
3) These models are significantly "better" than models from scrambled or random data (y, x, y and x)
4) 53 X variables are not too many to select from
5) The models have no external predictivity at all!
6) There is no relationship between internal and external predictivity

Reasons? Explanations? Help?

S. H. Unger and C. Hansch
J. Med. Chem. 16, 745-749 (1973)

One must rely heavily on statistics in formulating a quantitative model but, at each critical step in constructing the model, one must set aside statistics and ask questions. ... without a qualitative perspective one is apt to generate statistical unicorns, beasts that exist on paper but not in reality. ... it has recently become all too clear that one can correlate a set of dependent variables using random numbers as dependent variables. Such correlations meet the usual criteria of high significance ...
"Good" and "Bad" Guys in Regression Analysis

- Outlier in the test set:
 - r^2, Q^2 good
 - r^2_{pred} poor

- Outlier in the training set:
 - r^2, Q^2 poor
 - r^2_{pred} good

External vs. Internal Predictivity

Corticosteroid-binding globulin affinities of steroids

$log \frac{1}{CBG} = 1.861 (\pm 0.46) [4,5 \text{>C=C<}] + 5.186 (\pm 0.36)$

- $n = 31$; $r = 0.838$; $s = 0.600$; $F = 68.28$;
 - $Q^2 = 0.667$; $s_{PRESS} = 0.634$

Training set # 1-21; test set # 22-31

- $Q^2 = 0.726$; $r^2_{pred} = 0.477$; $s_{PRED} = 0.733$

Training set # 1-12 and 23-31; test set # 13-22

- $Q^2 = 0.454$; $r^2_{pred} = 0.909$; $s_{PRED} = 0.406$

H. Kubinyi, in: Computer-Assisted Lead Finding and Optimization
Summary, Conclusions and Recommendations

Apply the Unger and Hansch recommendations:
1. Selection of meaningful variables
2. Elimination of interrelated variables
3. Justification of variable choices by statistics
4. Principle of parsimony (Ockham's Razor)
5. Number of variables to choose from
6. Number of variables in the model
7. Qualitative biophysical model

Additional recommendations:
8. Beware of Q² (Alex Tropsha)
9. Search for outliers in the test set
10. Do not expect your model to be predictive

"All Models Are Wrong But Some Are Useful."
George E. P. Box, 1979