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When QSAR started about 40 years ago [1], the quantitative description of structure-
activity relationships (SARs) was in the foreground; prediction played only a minor role. A few
physicochemical parameters, i.e. lipophilicity, expressed by log P or π values, electronic
properties, expressed by σ, molar refractivity MR, steric properties, and/or parabolic
lipophilicity terms were used in the correlations. Later, quantum chemical and geometrical
parameters, connectivity values, electrotopological state parameters, WHIM parameters, and
many others were tested (see, e.g. [2,3]), whether they are suited to explain SARs in a
quantitative manner and whether the resulting models are capable to predict the activities of
new analogs. As a consequence of so many (artificial) parameters and despite the fact that
the use of too many parameters has been criticized already thirty years ago [4], the literature
is now spoiled with, most probably, thousands of meaningless chance correlations.

Rules and conditions have been formulated to achieve valid correlations: meaningful
variables shall be selected; the significance of the correlation and of each individual term in
the regression model shall be justified by the appropriate statistical parameters (r, s, F
values, sequential F test, and confidence intervals); the principle of parsimony shall be
applied, i.e. results being more or less equal, the simplest model shall be chosen; not too
many variables shall be tested and not too many variables shall be included in the final
model [5]; some more detailed recommendations were published later [6,7]. In addition,
crossvalidation [8], Y scrambling, and external (test set) predictivity are used as validation
criteria.

In the past, the Selwood dataset [9] has become a standard in evaluating variable
selection procedures (e.g. [10-12]); the biological activity data of 31 compounds are
described by a few variables that are selected from 53 candidate variables. Whereas
Selwood et al. and some later investigators (for a review, see [11]) were unable to derive the
"best" models, evolutionary and genetic algorithms [10-12] uncovered models that may be
regarded as the "best" ones, at least considering the common statistical parameters. The
models with the highest F value, out of all possible 317,682 models with up to four X
variables, is given by Eq. 1 [11,12]:

log 1/C =  - 0.0000749 (±0.000030) MOFI_Y + 0.584 (±0.20) Log P
                + 1.514 (±0.91) Sum_F - 2.501 (±0.85)                                         (1)
(n = 31; r = 0.849; s = 0.460; F =   23.27; Q² = 0.647; sPRESS = 0.518)

Eq. 1 corresponds to a very common situation in QSAR: a chemist synthesizes some 30
compounds; the biologist determines their activities; both ask a QSAR expert to derive a
"good" model; the resulting model is justified by all statistical parameters, including
confidence intervals of all regression coefficients and leave-one-out (LOO) crossvalidation.
But the questions arise: is Eq. 1 really a valid model? Is it better than models derived from
scrambled (or random) Y values, X values, or Y and X values? Are 53 variables too many to
select from? Can our models predict a test set? Is there a relationship between internal
(training set) and external (test set) predictivity?

For this purpose, systematic investigations of the Selwood dataset were performed. First,
several thousand Y scrambling runs showed that less than 1% of all scrambled Y vectors
have a correlation with the original Y values that is higher than r² = 0.20 (95% below r² =
0.12); correspondingly, a possible correlation between the original Y vector and the
scrambled Y vectors can be neglected. Next, scrambled Y vectors were correlated with the
variables of Eq. 1 (which is an inappropriate procedure; for every scrambled y vector, new X
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variable combinations have to be tested); due to expectation, in 1,000 different runs only 1%
of all models had F values >9.9 (95% with F <6.6; cf. Eq 1, F = 23.27; in these and all
following calculations, F values are used as selection criterion). If a correct Y scrambling
procedure is applied (i.e. Y scrambling first, then selection of the "best" model with up to four
Y variables, from any of the 317,682 possible models), only 1% of all "best" models from
1,000 different Y scrambling runs had F values >16.0 (95% with F <12.3). Random (instead
of scrambled) Y values, scrambled or random X values, and scrambled or random Y and X
values gave corresponding results: in all cases (1,000 runs each, models selected from all
371,682 possible models), less than 1% of the models had F values >21.2 (95% with F
<16.3; Figure 1; cf. Eq. 1, F = 23.27). Thus, neither scrambled nor random values produce a
significant percentage of models that are as good as Eq. 1, indicating the significance of this
QSAR model.

Figure 1. "Best" QSAR models with up to 4
variables for the Selwood dataset, using
scrambled (scr) or random (rnd) Y, X, or Y
and X values. The blue, green and red
columns indicate the maximum F values for
90%, 95% and 99% of the models. In the
first three cases, only the original X variables
of Eq. 1 (upper dashed red line) were used,
whereas in all other cases new "best"
models were derived from all possible
317,682 models (1,000 runs for each case).

The next question is: are 53 variables a reasonable number to start from or are they too
many? The X block randomization already shows that no "better" models are derived from
such a number. However, there is a kind of linear increase of "good" results with an
increasing number of random X variables: with 30 X variables to choose from, 95% of all
models (again 1,000 runs, "best" models selected from any of the 317,682 possible models)
have F values <13.0; with 40, 50, 60, 70 and 80 variables to select from, these F value limits
are <13.8, <15.8, <16.3, <16.7, and <18.1. From this more or less linear increase one can
extrapolate that only a selection from some 120-150 random variables may generate more
than 5% "best" models with higher F values than Eq. 1.

So far, only fit is considered, i.e. a "reasonable" quantitative explanation of the underlying
structure-activity relationship. But the real world is different: a chemist synthesizes some 20
compounds; the biologist determines the activities; both ask a QSAR expert to derive a
"good" model. Can the model be used to predict the biological activity values of 10
compounds of the same dataset? For this purpose, random training and test set selections
were performed; the size of the training sets varied from 30, 29, 28, 26, and 21 to 16 analogs
(generating test sets of 1, 2, 3, 5, 10, and 15 analogs); in all cases, 1,000 random selections
were performed and for every selection all 317,682 possible models were calculated to find
the "best" model in each case. For the "real world" situation like the one described above, i.e.
a training set of 21 compounds and a test set of 10 compounds, about 75% of all "best"
models are justified by LOO crossvalidation (Q² >0.6; about 90% with Q² >0.5; Figure 2),
indicating that in most cases of such a training/test set selection models can be obtained that
may be considered to be significant from their internal predictivity.

The more important question is whether these models have external predictivity.
Unfortunately, the answer is no, not at all. Only 1.6% of the "best" models produce r²pred

values >0.6 (6.0% with r²pred >0.5) and only about 44% are better than average in their
external predictivity (r²pred >0; Figure 3).
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Figure 2:  LOO crossvalidation results for the
"best" QSAR models (out of 317,682 possible
models with up to 4 variables; 1,000 runs in each
case), starting from random training set selections
with 30, 29, 28, 26, 21, or 16 compounds of the
Selwood dataset. The blue, green and red
columns indicate the percentage of models with
better results than Q² = 0.6, 0.5, and 0.0.

Figure 3:  External predictivity of the "best"
QSAR models of Figure 2 (n = 1, 2, 3, 5, 10,
or 15 compounds in the test set). The blue,
green and red columns indicate the
percentage of models with better results than
r²pred = 0.6, 0.5, and 0.0.

In the past, an inconsistency between internal and external predictivity has been observed in a few
3D QSAR and QSAR studies [13-15]. A first systematical investigation showed that, in general, there
is no relationship between internal and external predictivity [16]: high internal predictivity may result in
low external predictivity and vice versa. This effect, in the meantime being called the "Kubinyi paradox"
[17,18], was also observed in other QSAR studies [19] as well as in a retrospective investigation of
about 40 different 3D QSAR models [20]. For the Selwood dataset, Figure 4 shows that only 56 out of
1,000 "best" models have internal and external predictivity in a favorable range of Q² and r²pred = 0.6 -
1.0. All other models have either worse internal or worse external predictivity.

Figure 4:  Comparison of internal and external
predictivity of the "best" QSAR models, using a
training set of 21 compounds and a test set of
10 compounds (cf. Figures 2 and 3); only 56 of
1,000 models fall into the favorable category Q²
>0.6 and r²pred >0.6 (red box).

Neglecting for a moment the disappointing conclusion from this effect, it remains the question: what
are the reasons and how can we derive better QSAR models? First, we should return to the
recommendations of Topliss, Unger and Hansch [4,5], to include only reasonable variables, selected
from small numbers, and to generate only models that have a sound biophysical background. But
there remains another problem that can be demonstrated with another well-known dataset. Eq. 2 can
be derived for the corticosteroid-binding globulin affinities of 31 steroids (4,5 >C=C< codes for a
carbocyclic double bond between ring atoms 4 and 5) [15, 21, 22].

log 1/CBG = 1.861 (±0.46) [4,5 >C=C<] + 5.186 (±0.36)            (2)
(n = 31; r = 0.838; s = 0.600; F = 68.28; Q2 = 0.667; sPRESS = 0.634)
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As the dataset contains at least one outlier, compound # 31, it makes a significant difference
whether this compound is included in the training set or in the test set. A training set selection of
compounds # 1-21 (test set # 22-31) leads to Q2 = 0.726 and r2

pred = 0.477, with good internal and
poor external predictivity; on the other hand, a training set selection of compounds # 1-12 and 23-31
(test set # 13-22) leads to Q2 = 0.454 and r2

pred = 0.909, with poor internal but excellent external
predictivity [15].

As a conclusion, not only the recommendations of Topliss, Unger and Hansch should be followed,
also the chemical space of training and test sets has to be analyzed; real outliers, with respect to
congeneric character and structural similarity, have to be discovered and eliminated. Even then,
prediction by QSAR models remains a risky procedure.
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