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2.1 Introduction

Looking back on 40 years of research in medicinal chemistry, later in molecular
modeling and combinatorial chemistry, I see a significant change in the science
and art of drug discovery. When I started my industrial career in 1966, in the
search for new drugs, my colleagues and I synthesized a few compounds per week,
at most. The biggest problem was to convince the pharmacologists to investigate
them in due time, because they were still busy with the compounds delivered the
weeks before. The chemical structures of our candidates resulted from working
hypotheses that were often based on poor evidence. Once the compounds showed
some activity in animals, we hoped that this would also be the case in humans.
This situation, as well as books on drug discovery from that time, like Frank
Clarke’s How modern medicines are discovered,1 Alfred Burger’s A Guide to the
Chemical Basis of Drug Design,2 and Walter Sneader’s Drug Discovery: The
Evolution of Modern Medicines,3 sound like stories from an ancient time, long
ago. Nevertheless, they tell us how medicinal chemistry, biology, and pharma-
cology successfully(!) worked together to discover new medicines.

In an excellent review, Ralph Hirschmann characterized the decades between
1950 and 1990 as ‘‘Medicinal chemistry in the golden age of biology’’.4 Indeed,
this time was the golden age of drug discovery. New research results in
biochemistry and biology paved the way from neurotransmitters and hormones
to more-or-less selective agonists and antagonists of G protein-coupled recep-
tors (GPCRs) and nuclear receptors. Within this relatively short period, Paul
Janssen and his company were able to introduce about 80 new drugs into
human therapy, many of which are still highly valuable therapeutics.5 Whereas
this unique yield may be (correctly) interpreted as the success of a genius, one
should also consider that his research techniques were at the frontier of science.
He used a toolbox of biologically interesting substructures (today we would call
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them ‘‘privileged fragments’’) and assembled them in different combinations,
long before combinatorial chemistry or fragment-based design appeared on the
scene. Nonlinear mapping methods were applied to investigate the relationships
between animal and in vitro test models, and to characterize the biological
activity profiles of the compounds.6 But the main ingredient for success, as in
most other companies, was a deep understanding of the underlying structure–
activity relationships (SARs) and creative intuition in medicinal chemistry.

Nowadays genomics, proteomics, combinatorial chemistry, high-throughput
screening (HTS), structure-based and computer-aided design, and virtual
screening have completely changed the strategies of the drug discovery process.
Without focussing on experimental techniques, the most important computa-
tional approaches in drug discovery are discussed in the following sections,
which evaluate their strengths and limitations.

2.2 QSAR – Understanding Without Prediction

The very first computer-aided approach in drug design developed in the early
1960s, when Corwin Hansch started the QSAR (quantitative structure–activity
relationships) discipline.7,8 He considered drug action to result from two
independent processes, that is:

(i) transport of the drug from the site of application to the site of action,
and

(ii) non-covalent interactions of the drug with its binding site at a receptor.

As neither very polar nor very lipophilic compounds have a good chance to
permeate several lipid and aqueous phases, he formulated a nonlinear lipo-
philicity relationship for the transport. Then, following a proposal by his
postdoc Toshio Fujita, he combined lipophilicity terms and electronic para-
meters, and later molar refractivity and steric terms also, in a linear free-energy
related (LFER) model to describe the ligand–receptor interaction. His third
contribution was the definition of a lipophilicity parameter p, in the same
manner as Louis Hammett had defined the electronic s parameter 30 years
before. Whereas Hansch and his group, as well as many others, were able to
derive thousands of QSAR models for all kinds of biological activities, this
approach was not much accepted by medicinal chemists. The very same
happened to 3D QSAR methods, like comparative molecular field analysis
(CoMFA), which were introduced about 20 years later.9–12

In principle, 3D QSAR is more powerful than classic QSAR, because:

(i) 3D structures are considered instead of only 2D structures;
(ii) more heterogeneous sets of compounds can be included than in classic

QSAR;
(iii) molecular fields are calculated instead of just substituent constants;
(iv) contour maps show the effect of certain properties in certain regions.
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However, these advantages are associated with several problems:

(i) most often neither the bioactive conformation nor the binding mode of
the molecules of the data set are known;

(ii) a model-based superposition of the molecules always remains hypo-
thetical;

(iii) minor displacements of the box around the molecules generate different
and irreproducible results, because of the artificial cut-offs of the
Lennard-Jones and Coulomb potentials – this problem can be avoided
in the CoMSIA (comparative molecular similarity index analysis) mod-
ification13;

(iv) variable selection produces fragmented contour maps that are
difficult to interpret – instead of single variables, regions should be
selected.

Thus, two reasons may be responsible for the lack of acceptance of QSAR
and 3D QSAR by medicinal chemists: first, a detailed knowledge of statistics
and much practical experience are needed to apply these methods in a proper
manner and, second, even ‘‘good’’ models, with sufficient internal predictivity,
are often poor in test-set prediction.14–17 In particular, the best-fitting QSAR
models, which result from variable selection and are validated by all reasonable
statistical criteria, including cross-validation and y scrambling, are externally
less predictive than models with inferior fit, an observation that has been called
the ‘‘Kubinyi paradox’’.18,19 However, it’s no paradox, but results from the fact
that these best-fitting models include variables that fit the error in the data,
whereas some other models do not. The variation in test-set prediction results
from the distribution of data with major experimental error (not necessarily
outliers): if they are included in the test set, external predictivity is poor; if they
are included in the training set, fit is poor, but external predictivity may be
much better.17

So, what remains from QSAR for the medicinal chemist? The best answer
has been given by Robin Ganellin, one of the leading medicinal chemists of
our time, when he was asked by Steve Carney, ‘‘Has there been a single
development that, in your opinion, has moved the field of medicinal chemistry
ahead more than any other?’’ and Ganellin responded, ‘‘I would go back to
the 1960s to the work of Corwin Hansch on the importance of lipophilicity.
. . . I think that changed the way of thinking in medicinal chemistry . . . . I
think that the application of physical organic chemical approaches to struc-
ture–activity analysis have been very important’’.20 There is nothing more to
say. Today, ligand–receptor interactions are considered in terms of hydro-
phobic interactions, polarizability, and ionic and neutral hydrogen bonds. The
influence of lipophilicity, as well as of the dissociation and ionization of acids
and bases, on transport and distribution is well understood. Medicinal
chemists, who did not care about the pKa values of their acids or bases, are
now well aware of the risks that arise from those values being too far away
from 7, the neutral pH value.
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2.3 Gene Technology – from Mice to Humans

Gene technology created a lot of hype and it still creates a lot of fear. However,
many of the anticipated benefits have not resulted. In a critical analysis,
Glassman presents a long list of technologies for which the ‘‘initial hype of
healthcare innovations did not live up to expectations’’,21 including immuno-
therapy for cancer, stem cell technology, antisense technology, pharmacoge-
nomics, genomics-based target identification, and gene therapy. He argues that
the targets of several blockbuster drugs [statins, proton-pump inhibitors,
leukotriene antagonists, selective serotonin reuptake inhibitors (SSRIs), taxol,
angiotensin-converting enzyme (ACE) inhibitors, antihistamines, and kinase
inhibitors] would not have been discovered by a systematic search for mutated
‘‘disease’’ genes. However, he admits that these targets might have been
discovered through knockout technology.

Gene therapy has not yet been a success and we do not know whether it will
be applicable in the future. Also, genomics-based target identification has not
delivered to the expected extent. On the other hand, gene technology contrib-
utes to the production of human proteins for substitution therapy [insulin,
growth hormone, erythropoietin (EPO), etc.] and to a better understanding of
the function of enzymes and receptors. By far, the most important application
of gene technology is in drug research. After the identification of a potential
target, by any technology, the deoxyribonucleic acid (DNA) or messenger
RNA (m-RNA) sequence of the corresponding gene directly provides the
protein sequence. In many cases, even the folding and the function of a protein
can be derived from its sequence. Larger amounts of the protein are produced
in bacteria, insect cells, or higher organism cells, which enables the development
of (high-throughput) screening models and, if more material becomes available,
also a 3D structure elucidation by protein crystallography or multidimensional
nuclear magnetic resonance (NMR) methods. Going back 25 years, this was the
situation: with certain exceptions, we could only test in animals or with organs
or other material from animals, which too often produced misleading results.
Now we screen and develop our potential drug candidates with human (!)
proteins – this is most probably the biggest achievement of gene technology for
the benefit of mankind.

Before the sequence of the human genome became known, there were
estimates of about 100 000 or even more human genes. This number had
immediately to be corrected to about 30 000–35 000; recent estimates are closer
to 20 000–25 000 than to these larger numbers. In the year 2000, Jürgen Drews
counted 483 targets of current therapies and he speculated that, in total, there
might be about 5000–10 000 drug targets, starting from an estimate of about
1000 ‘‘disease’’ genes and 5–10 proteins linked to such a disease gene.22

Hopkins and Groom arrived at much smaller numbers in their estimate of
the ‘‘druggable genome’’. Starting from a number of 30 000 genes in the human
genome, they assumed that about 10% are disease-modifying genes and about
10% are druggable genes (i.e. genes for which the corresponding proteins can
be modulated by a small molecule). As both subsets do not completely overlap,
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600–1500 drug targets were estimated.23 This estimate has to be criticized,
because the term ‘‘druggable genome’’ is highly misleading. The relatively small
number of genes within our genome codes for a few hundred thousands
different proteins, because of alternative splicing and post-translational mod-
ifications. Many more potential drug targets result from protein-complex
formation – a few protein chains form a multitude of different receptors and
ion channels [e.g. the integrins, heterodimeric GPCRs and nuclear receptors,
g-aminobutyric acid (GABA) and nicotinic acetylcholine receptors, etc.].24

Without speculating about numbers of druggable, disease-relevant proteins,
we can conclude that there are many more potential targets than anticipated by
Hopkins and Groom; the number might even surpass Drews’ estimate. Indeed,
the situation is more complex – several drugs, especially central nervous system
(CNS) drugs, do not act against only one target, they modulate several targets
at the same time.

Thus, two questions are associated with target-based screening. The first is
whether high target selectivity is a desirable or unfavorable property? In certain
cases it might be imperative to have such a high target selectivity [e.g. for an
human immunodeficiency virus (HIV) protease inhibitor], but even here acti-
vity against a multitude of protease mutants of resistant strains is highly
desirable. In other cases, it might be good to have a defined but broader
selectivity against several related targets [e.g. metalloprotease inhibitors, kinase
inhibitors (newer investigations show that even so-called ‘‘selective’’ inhibitors,
like imatinib, show a broader spectrum of inhibitory activities against several
kinases25 than originally anticipated), and especially CNS-active drugs, e.g. the
atypical neuroleptic olanzapine, which has nanomolar affinities at more than a
dozen different GPCRs and the 5-hydroxytryptamine (5HT3) ion channel].
Nobody will ever know whether this promiscuous binding behavior shows the
right pattern or whether activities at a certain receptor should be higher or
lower; but even if we knew, how could we design a compound that has exactly
this slightly modified binding pattern?

The second question is, ‘‘Do we lose too many potential drugs by target-
based screening?’’ The unexpected prodrug sulfamidochrysoidine would not
have been discovered in cell culture; omeprazole acts only in acid-producing
cells, after acid-catalyzed rearrangement; aciclovir is monophosphorylated only
by a viral thymidine kinase, thus it works only in virus-infected cells. For this
purpose, chemical biology, which aims to discover new leads by searching for
phenotypical changes in cells or small animals, is a step in the right direction.

2.4 Combinatorial Library Design – Driven by

Medicinal Chemistry

Combinatorial chemistry really had a poor start. In a bid for numbers, huge
libraries were prepared as more-or-less undefined mixtures of compounds,
driven by chemical accessibility. Biological activities, if discovered, often dis-
appeared after deconvolution (i.e. the preparation of pure, single compounds
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that should be present in the mixture). Even when chemists realized some of the
problems of such libraries, they searched for potential solutions in the wrong
direction. In the 1990s, similarity and diversity were a big issue in chemoin-
formatics, despite the fact that the similarity of compounds can only be defined
from a chemical point of view, never from a biological perspective.26 But even
from a chemical point of view, how similar or dissimilar are benzene and
cyclohexane? Looking at aromaticity – no similarity at all; looking at lipophili-
city and many other properties – very similar.

In 1998, Stuart Schreiber impressed organic chemists with the stereo-
selective synthesis of a library of 2.18 million ‘‘natural product-like com-
pounds’’, starting from shikimic acid via a tricyclic intermediate, which allowed
specific chemical reactions in many different directions.27 In a misunderstand-
ing of chemical diversity and in an over-optimistic consideration of its potential
for producing biologically active compounds, this approach was called
‘‘diversity-oriented organic synthesis’’ (DOS).28 In a later retrospective,
Schreiber had to admit that ‘‘the field of DOS has not yet come close to
reaching its goals . . . even a qualitative analysis of the members . . . reveals
that they are disappointingly similar. Of even greater concern is that the
selection of compounds has so far been guided only by the organic chemist’s
knowledge of candidate reactions, creativity in planning DOS pathways,
and intuition about the properties likely to yield effective modulators. Retro-
spective analyses of these compounds show that they tend to cluster in
discrete regions of multidimensional descriptor space. Although algorithms
exist to identify subsets of actual or virtual compounds that best distribute in
chemical space in a defined way . . . these are of little value to the planning
of DOS’’.29 This is exactly the dilemma of chemistry-driven combinatorial
chemistry.

Recently Lipinski and Hopkins presented a cartoon which shows the chem-
ical space as a box with embedded regions that stand for bioavailable com-
pounds [the absorption, distribution, metabolism, and excretion (ADME)
space], GPCR ligands, kinase inhibitors, protease inhibitors (in this cartoon
they do not overlap with the ADME region – a sad experience in the search for
bioavailable thrombin inhibitors).30 If one understands chemical space as being
of almost infinite size and the ‘‘bioactivity regions’’ just as very tiny spots, like
the stars within our universe, we can more easily understand and accept the
almost complete failure of chemistry-driven combinatorial libraries with
respect to new biologically active compounds. The situation is even worse –
biological activity space seems not to be evenly distributed in chemical space.
There are groups of islands with higher density, so-called ‘‘privileged struc-
tures’’,31 which definitely have a higher chance to produce biologically active
molecules than others. Such privileged structures (e.g. the benzodiazepines,
steroids, phenethylamines, diphenylmethanes, diphenylamines, and tricyclics,
to mention only a few) are also called chemical masterkeys,32 following the
‘‘lock and key’’ principle of Emil Fischer. Searching for ‘‘new’’ chemistry
increases the risk of ending up with biologically inactive molecules because it
avoids the privileged ‘‘activity islands’’.
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Camille Wermuth, another great medicinal chemist of our time, proposed the
‘‘selective optimization of side activities’’ (SOSA) approach,33,34 which starts
from any side activity of a certain drug and aims to optimize this activity and to
generate a new selectivity in this direction. There are several examples from the
past where such side activities have been discovered and used to create new
drugs, e.g. the development of diuretic and antidiabetic sulfonamides from the
antibacterial sulfonamides (reviewed by Wermuth33,34 and Kubinyi35).

In 1999, Roger Lahana argued that not a single new lead resulted from HTS
and combinatorial chemistry.36 Whereas this statement was and is wrong, his
other conclusion, ‘‘when trying to find a needle in a haystack, the best strategy
might not be to increase the size of the haystack’’ is absolutely correct. Another
truism was formulated by Ashton and Moloney,37 ‘‘Combinatorial chemistry
has certainly failed to meet early expectations. Does this mean the technology
has failed? Or does the problem lie in the manner in which the technology has
been applied?’’

In 1997 Chris Lipinski had already observed that some properties of the
Pfizer in-house compounds, especially molecular weight and lipophilicity,
developed in a wrong direction. As a consequence of increasing molecular
weight and increasing lipophilicity, many screening hits could not be profiled
as potential leads. Investigating a collection of drugs and drug candidates, he
realized that only a minor percentage of these compounds had a molecular
weight 4500, a lipophilicity (expressed as log P) 45, more than five hydrogen
bond donors, and more than 10 N+O atoms (as a rough estimate of the
number of hydrogen bond acceptors). From this observation he defined his
now famous ‘‘Rule of Five’’ (also called the Lipinski rule of 5 and Pfizer
rule of 5) that low permeability of a molecule is to be expected if more than
one of the following rules is violated: molecular weight o500, log Po5, no
more than five hydrogen bond donors, and no more than 10 hydrogen bond
acceptors.38 Originally intended only as a warning flag for the Pfizer chemists,
the rule was immediately accepted by the scientific community. It helped to
clear screening collections from inappropriate compounds and to avoid the
synthesis of meaningless combinatorial libraries. Nowadays, application of the
Lipinski rule is mandatory in compound acquisition and in almost every
library design.

Sometimes the Lipinski rule is misunderstood in the sense that it could define
a drug-like character of the compounds. This is not the case – it defines drug-
like properties with respect to bioavailability, but not drug-like structures; most
of the Available Chemicals Directory (ACD) compounds pass the Lipinski
filter, but they are by no means drug-like with respect to their structures. In a
rare coincidence, two groups at Vertex and BASF independently developed
almost identical neural net filters to characterize drug-likeness with respect to
chemical structures.39,40 Both groups used chemical descriptors, training sets
from drug collections and from the ACD, and two different versions of
supervised neural nets. To some surprise, the trained nets are able to differen-
tiate between drugs and chemicals with a precision of about 75–80%, even
if in different runs complete sets of drugs (e.g. CNS drugs, cardiovascular
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drugs, hormones) were eliminated from the training sets. Whereas a failure rate
of 20–25% is acceptable for the evaluation of libraries, it is not suitable to
accept or discard a certain compound. Thus, such tools should be used only to
enrich or rank libraries and compound collections, and not for individual
compounds.

In addition to drug-like properties and drug-likeness, lead structure proper-
ties have also been defined, starting from the observation that in recent years
the optimization of leads produced most often (much) larger and (much) more
lipophilic analogues. Different recommendations were given, most of which
restricted molecular weight and lipophilicity to relatively low values.41–43

However, an independent investigation of 470 lead–drug pairs showed that
molecular weight increased, on the average, from the lead to the final drug only
by 38 mass units.44 It was early combinatorial chemistry that misled chemists
simply to decorate lead structures with additional rings and other large subs-
tituents. Medicinal chemists of the past demonstrated how to modify lead
structures in a more intelligent manner, often producing smaller analogues
with higher activity or selectivity (e.g. several major analgesics, derived from
morphine).

How to apply combinatorial chemistry or, better, automated parallel syn-
thesis in medicinal chemistry? Its contribution to lead finding is relatively poor,
because of the unfavorable ratio of chemical vs. biological activity space, as
discussed above. If lead discovery libraries are to be designed:

(i) they should create real diversity by producing many small libraries with
different, nonplanar scaffolds (e.g. natural products), instead of just one
huge library with diverse decoration, and

(ii) the libraries should be checked for their drug-like or lead-like properties
and their drug-like character.

The biggest potential of parallel automated synthesis is in chemogenomics
and in the early steps of lead optimization. Chemogenomics aims to discover
selective ligands of a certain target within a family of proteins or to shift
biological activity and/or selectivity from one target to a related one. This is
achieved by testing chemically related compounds in classes of evolutionary
related targets (GPCRs, integrins, nuclear hormone receptors, aspartyl, me-
tallo-, serine and cysteine proteases, kinases, phosphatases, ion channels,
etc.).45 Following this strategy, it is mandatory to synthesize and test a large
number of analogues around a lead structure to find directions for further
optimization, in any direction. In lead optimization, one should cover the
chemical space around the current lead as completely as possible, in order not
to lose any interesting candidates and to obtain a solid intellectual property
position. Whenever improved candidate molecules are observed (e.g. with
higher affinity, selectivity, bioavailability, and/or therapeutic range), the proc-
ess can be repeated around the new structure, if chemically feasible. In the very
last steps of lead structure optimization, dedicated syntheses will be necessary –
then classic medicinal chemistry is back again.
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2.5 Docking and Scoring – Solved and Unsolved

Problems

Molecular modeling also had a difficult start. Early limitations in calculation
power meant molecules were considered in vacuo. However, humans are
aqueous systems and all drug targets are surrounded, even ‘‘filled’’, with water.
Conformations of molecules were not understood as populations of several to
many low-energy geometries – only the minimum energy conformation of a
molecule was considered. Slowly chemists and modelers realized that ligand
conformations in vacuo, in aqueous solution, in the crystal, and at the binding
site of a protein may be very different. Whereas it is true that a ligand of a
protein will not bind in a high-energy conformation of the ligand and/or the
protein, the net free energy of binding results from the balance of entropy gain
and entropy loss, as well as enthalpy gain and enthalpy loss. This includes also
minor distortions of the ligand and/or the protein, which are to be compensated
by other, favorable effects.

Why mention entropy first? The role of entropy is less well understood than
the influence of enthalpy and it is most often underestimated. A ligand and its
binding site at the surface or in a cavity of a protein are completely covered by
water molecules. Some of them are relatively happy, despite the fact that they
are more-or-less immobilized (unfavorable entropy), because they form hydro-
gen bonds to polar groups of either the ligand or the protein (favorable
enthalpy). Some other molecules do not feel well, because they are loosely
ordered at nonpolar surfaces; there is no favorable enthalpic interaction, only
an unfavorable entropic contribution. When the ligand and the protein form a
complex, (almost) all water molecules at the interacting surfaces have to be
stripped. The water molecules formerly ordered at the hydrophobic surfaces are
now happy; they can freely move in the aqueous medium surrounding the
complex – this is the driving force of hydrophobic interaction. It is important to
know that a perfect fit of hydrophobic residues into their hydrophobic cavities
contributes most to ligand affinity; partially filled pockets (‘‘horror vacui’’) or
trapped water molecules in such nonpolar surroundings are highly unfavorable.

However, there is never a free lunch, and so also not in ligand binding: if too
many hydrophobic groups are present, the solubility of the ligand decreases
beyond a level that is acceptable for a drug molecule. The enthalpy terms of the
stripping of water molecules, being hydrogen-bonded either to the ligand or to
the protein surface, are partially or completely compensated by the entropy
gain of their release and the interaction enthalpy of the new hydrogen bond
between the ligand and the protein. Instead of increasing affinity, this some-
times results in an unfavorable contribution to binding affinity. In general,
hydrogen bonds are important for recognition and for the orientation of a
ligand to its binding site, but their affinity contributions are hard to predict.46

The contributions of hydrogen bonds of the ligand to easily accessible polar
groups at the surface of a protein are often overestimated in their affinity-
enhancing effect.
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In addition to all these effects, there is the unfavorable entropy of freezing
the translational and rotational degrees of freedom of the ligand, as well
as freezing the internal rotational degrees of freedom of the ligand and the
binding site, and the unfavorable enthalpy terms of some distortions of the
ligand and/or the binding site.

In his early studies on structure-based design, Peter Goodford developed the
computer program GRID, which rolls chemical probes around the surface of a
protein to discover regions where certain chemical functionalities should pro-
vide favorable interactions.47 Out of the many interesting applications of the
program GRID,48 probably the most exciting one is the computer-aided design
of the neuraminidase inhibitor zanamivir.49 When Mark von Itzstein applied
the program to investigate the 3D structure of neuraminidase, it uncovered a
pocket for a positively charged group, close to a hydroxyl group of a weakly
active lead structure. With only a few chemical modifications, e.g. by exchang-
ing this hydroxyl group with a guanidinium group, the in vitro activity of the
ligand could be increased by four orders of magnitude – a world record in
computer-aided design.49

Docking programs go a step further. They use 3D structures of potential
ligands to automatically position them into the known 3D structure of the
binding region of a target protein. The very first version of the program
DOCK50 considered only geometric complementarity, without searching for
potential interactions. LUDI, a hybrid of a docking and de novo program,51

defines interaction sites within the binding site and searches for molecules
which have the corresponding functionalities exactly in these positions. In a
further step, other small molecules or groups may be attached to such ligands.
A simple scoring function was developed to rank the results according to their
quality of geometric fit and interaction energies.52

Many different programs for rigid and flexible docking and for de novo
design have been developed in the meantime (for recent reviews see Schneider
and Böhm,53 Schulz-Gasch and Stahl,54 and Warren et al.55), most of which
generate reasonable poses for the potential ligands. The problem lies in ranking
the results – which pose is ‘‘better’’ than the others and how can the ligands be
ranked according to their estimated affinities? As different docking programs
and scoring functions are reviewed in detail elsewhere,54–60 only the inherent
problems of scoring functions are discussed here.

An obvious problem in the calibration and validation of general scoring
functions, i.e. scoring functions that will be applicable to any ligand–
protein complex, is the quality of the biological data. These stem from dif-
ferent laboratories and correspondingly differ in test conditions, precision,
and reliability. If one considers the difficulties to reproduce Ki or IC50

values (concentration required for 50% inhibition) from one laboratory to
another one, standard deviations of one log unit are a reasonable error
estimate.

The next problem comes from the protein 3D structures. Even if they are
absolutely correct, with respect to electron density interpretation, they often
lack a careful inspection and orientation of the hydrogen-bonding groups.
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Thus, it might happen that incorrectly oriented hydroxyl groups and aspara-
gine, glutamine, threonine, or histidine side chains, even at a distant site, are
responsible for incorrect orientations of amino acid side chains within the
binding site. pH shifts may influence the protonation state of histidine and
lysine.

Whereas the Protein Database61 provides many hundreds to thousands of
3D structures of ligand–protein complexes (depending on the desired resolu-
tion), it does not contain too many complexes with low, i.e. millimolar, ligand
affinities. Although such information would be important to study unfavorable
interactions, it is under-represented in the calibration of scoring functions.
Entropic effects, which are discussed in detail above, are only roughly con-
sidered, e.g. by the area of the interacting hydrophobic surfaces. Internal
rotational energies of ligands and the entropy loss on freezing the bioactive
conformation are only considered by a constant term per rotatable bond.
Unfavorable geometries of the ligand or the binding site are not considered
at all.

Scoring functions do not consider the molecular electrostatic potential of the
protein and the dipole moment of the ligand. Inserted water molecules have to
be placed ‘‘by hand’’ – whether their replacement is favorable or not can be
estimated by the program GRID.47 Although some docking programs are able
to use various conformations of a binding site, the scoring functions do not
consider the residual flexibility of the ligand–protein complex. Large ligands
have lower affinities than expected from the sum of favorable interactions,62 an
effect that has so far been considered only in some docking studies (e.g. Huang
et al.63 and Krämer et al.64).

The importance of desolvation in ligand binding was discussed about 20
years ago, in much detail. In a series of thermolysin inhibitors, a hydrogen bond
of the ligands from an –NH– group to a backbone carbonyl oxygen of the
protein.65–68 Replacement of the –NH– group by –O– reduced affinities by
three orders of magnitude, which is to be expected because of the lacking
hydrogen bond and an electrostatic repulsion between the two oxygen atoms.
Replacement of the –NH– group by a –CH2– group retained affinity,68 an effect
which had already been predicted from modeling two years earlier.69 The –
CH2– group cannot form a hydrogen bond in the complex, but there is also no
negative effect from desolvation, as in the –NH– and –O– analogues.

This is a long list of problems and it is far from complete. Very recently, the
group of Brian Shoichet discussed decoys in docking and scoring,70 i.e. mol-
ecules with favorable rankings from several scoring functions but without
binding affinity. They realized three problems:

(i) scoring functions may tolerate ligands that are too large;
(ii) scoring functions with the hard 12-6 van der Waals potential may miss

potential ligands because of steric conflicts;
(iii) scoring functions do not consider the desolvation of the ligands in an

adequate manner and therefore overestimate the affinity of polar com-
pounds.
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Scoring functions will have to consider such details, otherwise they will
continue to fail. In a most comprehensive comparison, GlaxoSmithKline
modeling groups at three different locations cooperated to evaluate 10 docking
programs and 37 scoring functions against eight therapeutically interesting
proteins of seven protein types. In the publication of their results55 they arrive
at the conclusion ‘‘ . . . no single program performed well for all of the targets.
For prediction of compound affinity, none of the docking programs or scoring
functions made a useful prediction of ligand binding affinity’’. Graves et al.
proposed the use of typical docking decoys as test cases in to further improve
scoring functions.70

2.6 Virtual Screening – the Road to Success

Virtual screening covers a series of computer techniques, from simple filtering71

and pharmacophore searches to docking and scoring.72–77 The title of this
section has a double meaning: all virtual screening techniques have to be
applied in a proper manner to be successful – if these recommendations are
followed, they will be successful in the search for new leads.

Virtual screening starts from a database of real compounds or from a virtual
database, in which the chemical structures exist only in the computer. Even at
this stage a careful preparation of the database is necessary. Besides the
elimination of duplicates and counterions, compounds with undesired func-
tionalities (reactive compounds, organometallics, etc.) should be eliminated. If
not assigned in a unique manner, all configurations, as well as all enantiomers
and diastereomers of chiral compounds, have to be generated. Carboxylic acids
should be deprotonated, and amidines and guanidines should be protonated.
All other acids (activated sulfonamides, phenols, etc.) and bases (amines,
nitrogen-containing heterocycles) should be generated, in parallel, in the neu-
tral and ionized forms. Compounds existing as tautomers should be generated
in the correct form or as several different tautomers, e.g. by the program
Agent.78 3D structures must be generated if 3D searches or docking are to be
performed. If different ligand conformations are not considered ‘‘on the fly’’,
multiple low-energy conformations have to be generated. Pharmacophoric
features have to be defined in a correct manner, avoiding the attribution of
acceptor properties to oxygen atoms with low electron density (e.g. the oxygen
atom that is attached to the carbonyl group of esters, oxygen atoms in five-
membered aromatic heterocycles, etc.).24 All these processes are an absolute
must, otherwise pharmacophore searches and docking will fail.

The next steps are options, but they are highly recommended. According to
the needs of the user, different filters can be applied to narrow down the
originally large size of the database. The filters can set molecular weight ranges,
ranges for lipophilicity, and upper numbers for hydrogen bond donors and
acceptors (e.g. by using the Lipinski rule), but also for polar surface area,
number of rotatable bonds, number of rings, maximum number of halogens
(more fluorine atoms than chlorine, bromine or iodine atoms may be accepted),
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etc. Such filters should be handled with the appropriate flexibility. The next step
is the elimination of certain groups that should not be present (e.g. multiple
amide groups, to eliminate peptides) or the inclusion of groups that should be
present (‘‘warhead’’ groups, like activated sulfonamides in carbonic anhydrase
inhibitors, zinc-complexing groups in metalloprotease inhibitors, etc.).

Additional options are filters for lead-likeness, neural nets to prioritize
compounds according to their drug-likeness or potential cytotoxicity, pharma-
cophore models for CYP 450 inhibition, hERG channel inhibition, and other
antitarget activities. Too many filters should not be applied at the same time,
because they all have a certain error range – thus, using too many might
eliminate too many interesting candidate structures.

These preliminary steps are followed by pharmacophore searches. It is
appropriate to search first for the presence of the desired pharmacophore
groups and only then perform the more time-consuming step of a topological
or 3D pharmacophore search. The pharmacophore can be derived from the 3D
structures of active and inactive ligands, in a classic manner (e.g. by using the
‘‘active analogue approach’’) or by appropriate software. If 3D structures of a
ligand–protein complex are available, the new program LigandScout is an
attractive option to generate a pharmacophore.79 As an alternative to classic
3D pharmacophore searches, the much faster FTree program may be used,80,81

which showed the best performance in a recent comparison of different virtual
screening protocols.82 Even higher enrichment factors of active analogues can
be achieved by using the newly developed multiple ligand-based MTree ap-
proach.83

The best candidates from the pharmacophore FTree or MTree searches
should be flexibly docked into the experimental 3D structure of the target
(beware, 3D structures of unliganded proteins may differ significantly from
complex structures; if dimers or oligomers of the protein are the biologically
active form, their 3D structures have to be used instead of the monomer 3D
structure).

Experience shows that several different scoring functions should be applied
to evaluate the docking results – which one will have the better performance for
a certain target cannot be predicted a priori. Some investigators ‘‘spike’’ the
database with known actives to find out which scoring function produces
the best results. Of utmost importance is a visual inspection of the results
for unreasonable ligand geometries, unreasonable binding modes, potential
van der Waals clashes, polar interactions at the protein surface, etc.

The docking results may be clustered according to their chemical similarity.
Only some compounds within a cluster may be picked for biological testing and
groups of compounds with already known scaffolds may be eliminated.

A comprehensive review of such virtual screening procedures showed that in
almost all cases interesting lead structures were observed, with micromolar to
subnanomolar affinities to their target.77 Even homology models of soluble
proteins and GPCRs yielded good docking results, showing the enormous
potential of virtual screening in the search for new leads of all potential
targets.
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2.7 Fragment-based and Combinatorial Design – A New

Challenge

In 1975 Green had dissected biotin, the femtomolar ligand of avidin and
streptavidin. Elimination of the sulfur atom reduced affinity to some extent.
Dissecting this desthiobiotin further, into 4-methylimidazolin-2-one and
caproic acid, produced millimolar to submillimolar ligands.84 A similar effect
was obtained by Kati et al., by dissecting a subpicomolar transition state
inhibitor of adenosine deaminase.85 Seemingly, nobody considered to go the
opposite way, i.e. to design a high-affinity ligand by combining low-affinity
fragments.

Only in 1996 did Stephen Fesik develop the SAR-by-NMR (structure–activity
relationships by nuclear magnetic resonance) method. This is an experimental
approach in which, first, a low-affinity binder for a certain pocket of a binding
site is searched for by NMR measurement, then this site is saturated with the
ligand and another ligand is sought for an adjacent binding pocket. In the last
step, the two ligands have to be linked in a relaxed conformation, to end up with
a high-affinity ligand.86–89 Other experimental techniques followed, based on
protein crystallography, NMR, and mass spectrometry (for a comprehensive
review, see Erlanson et al.90). Schuffenhauer et al. recently described the design
of a dedicated library for fragment-based screening.91

The computer program RECAP has been used to dissect drug molecules into
pieces that can easily be re-assembled by typical organic reactions.92 Such
fragments can be used for scaffold hopping (i.e. to generate a virtual library of
new drug-like molecules) by connecting the pieces in a combinatorial manner,
and to compare the similarity of the resulting structures with a lead structure.93

In their search for cyclin-dependent kinase 4 (CDK4) inhibitors, Honma et al.
first constructed a homology model, starting from the 3D structure of activated
CDK2, and then performed a de novo design of ligands in the binding site, using
the programs LEGEND and SEEDS.94 Grzybowski et al. started from
p-carboxamidophenylsulfonamide, a submicromolar ligand of carbonic anhyd-
rase.95,96 Within the binding site of this protein they generated 100 000 different
N-substituents of the carboxamido group from a limited number of very small
groups, by using the program CombiSMoG (combinatorial small molecular
generator). The highest-scoring molecule showed 30 pM affinity. Krier et al.
propose a scaffold-linker functional (SCF) group approach to convert active
ligands into high-affinity analogues. Starting from the phosphodiesterases 4
(PDE4) inhibitor zardaverine, they designed a virtual combinatorial library
that combined zardaverine and a few close analogues with different carbon-
chain linkers and different functional groups, e.g. amines and aromatic rings.
The results of this relatively small library were analogues with 40-fold to
900-fold improved inhibitory activity.97

These few examples show that the use of computer programs for fragment-
based and combinatorial ligand design is just starting (for a recent review see
Schneider and Fechner98). Programs for incremental flexible docking, like

37The Changing Landscape in Drug Discovery



FlexX,99,100 could, in principle, be directly used for such a purpose. Instead of
the original bits and pieces of the ligand, thousands of alternative structural
elements could be used, creating a virtual multitude of potential ligands. These
potential ligands need not even be constructed in the computer, and only the
best intermediate results of the incremental design would be forwarded to the
next step, to assemble the next partial structure (a corresponding tool Flex-
Novo101 is in development). However, the problem of ranking the intermediate
results is now even much more difficult than that for docking only the original
ligand. Further improvements in the scoring functions will be necessary to
apply this appealing approach as a routine technique. In addition, the compu-
ter programs should include simple rules (e.g. the RECAP reactions92) for the
chemical accessibility of the potential ligands.

2.8 Summary and Conclusions

Within the past few decades the strategies of drug design have changed
significantly. Whereas chemistry, biological activity hypotheses, and animal
experiments dominated drug research, especially in its ‘‘golden age’’, in the
1960s and 1970s, many new technologies have developed over the past 20
years.102 A vast number of new drugs was expected to result from combina-
torial chemistry and HTS. In the meantime, most groups learned that this is not
the case; the yield of new drug candidates was relatively poor and the number
of new chemical entities (NCEs) is steadily declining.103 It is now evident that
chemistry-driven syntheses are most often a waste of resources.

Genomics, proteomics, and pharmacogenomics support the discovery of new
targets for human therapy. Target validation is performed with genetically
modified animals or with the new small interfering RNA (siRNA) technology.
System biology and orthogonal ligand–receptor pairs help us to understand the
effect of a modulator of a certain protein, long before such a compound is
discovered. However, two problems remain: first, will the target be ‘‘druggable’’
(i.e. can it be modulated) and will such a modulator be discovered with
reasonable effort and within reasonable time? Several protein–protein interac-
tions seem to be not druggable, at least so far. Second, will the modulator of the
new target at the very end, after years and years of research, preclinical
profiling, and clinical testing, be suited as an efficient and safe drug in human
therapy?

Once a target is identified, its 3D structure can be elucidated by structural
biology or, at least in many cases, be modeled from the 3D structures of related
proteins. With the ongoing progress in protein crystallography and multidi-
mensional NMR studies, the 3D structures of many important proteins,
especially enzymes, have been elucidated at atomic resolution. This information
enables the structure-based design of therapeutically useful enzyme inhibitors,
many of them still in preclinical or clinical development. Whereas structure-
based design can be regarded as the predominant strategy of the past decade,
several computer-assisted methods were developed more recently. If thousands
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of candidates and even larger structural databases are to be tested as to whether
there are suitable ligands of a certain binding site, this can no longer be
performed by hand. The design process has to be automated, i.e. investigated
with the help of the computer. Virtual screening selects compounds or libraries
that are either lead-like, drug-like, have a good potential of oral bioavailability,
or are similar to a lead, by sets of rules, neural nets, similarity analyses,
pharmacophore analyses, or docking and scoring.

Correspondingly, the identification of lead structures of a druggable target,
by HTS, by structure-based design, or by computer-aided approaches, is now
more-or-less a routine approach, as well as their optimization with respect to
target affinity. Successful applications of virtual screening, 3D structure-based
design, and docking demonstrate the value of these techniques in the selection
and rational design of high-affinity protein ligands. Whereas the application of
all modern technologies in this step is highly desirable, the risk increases that
the accumulated experience in medicinal chemistry104 becomes increasingly
forgotten. Chemists of our time, especially if they lack medicinal chemistry
know-how, tend to ‘‘decorate’’ their lead structures, instead of taking the
more difficult route of systematic chemical variation, including the formation
of new rings (rigidization of a bioactive conformation), replacing ring or chain
atoms, etc.

The time from selecting a new target to discovering a series of promising
leads and optimizing them to nanomolar ligands is now much shorter than in
the past. However, this is often accompanied by a neglect of favorable ADME
properties. High affinity to a disease-relevant target is only a necessary property
of a drug candidate, not a sufficient one. In addition, a drug must have the right
selectivity, it must be orally bioavailable, should have favorable pharmacoki-
netics and metabolism, and should lack serious side effects. The desired degree
of selectivity cannot be defined in an absolute manner. In some cases high
selectivity is mandatory, in other cases (e.g. for kinase inhibitors) a certain
lack of selectivity might be tolerable (e.g. imatinib, Gleevect), whereas in the
case of CNS-active drugs a high degree of promiscuity might be better than a
one-target selectivity.

What are the reasons for the so-called ‘‘productivity gap’’ in pharmaceutical
industry, i.e. the situation that research costs steadily increase, but output is
declining103? There is no unique answer and there are no simple reasons. One
possible explanation is the already relatively high standard in the symptomatic
treatment of ‘‘simple’’, acute diseases. Poor ADME properties are often cited as
the most common reason for failure in clinical development, creating a demand
for ADME prediction tools; however, this conclusion is based on old data105

and is not even generally supported by these data.24,106 ADME became an issue
in the attempt to optimize large, lipophilic hits from early combinatorial
chemistry and HTS; it was never a major reason for the failure in clinical
development, neither in the early period of 1964–1985 (7% attrition rate due to
ADME, excluding anti-infectives),24,106 nor in the years 1992–2002 (11%
attrition rate due to ADME).107 Bioavailability problems can now be mini-
mized at a very early stage, e.g. by applying the Lipinski rule.38
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In our time, the two most common reasons for clinical failure are lack of
efficacy and/or toxic side effects; they account for about 75% of all terminated
clinical studies106,107; both effects cannot be completely separated, because
often just the therapeutic window is small – low doses are without sufficient
efficacy, but high doses cause toxic side effects. In human therapy, chronic
diseases, especially cell-degenerative diseases, are much harder to prevent or
treat than acute disorders: often the disease is already too far advanced before it
can be diagnosed, e.g. in cancer, Alzheimer’s disease, or Parkinson’s disease.
For some progressive diseases it would be desirable to treat healthy people to
prevent the development of certain pathological conditions. For this purpose,
the drug must be totally free of any side effects, even after treatment over years,
which seems to be an impossible task.

Our current expectations on the efficacy and safety of a drug are much, much
higher than they were decades ago. Correspondingly, restrictions by the health
agencies have increased from decade to decade. It is questionable whether, e.g.
acetylsalicylic acid (aspirint) or corticosteroids, would nowadays be approved
as ‘‘safe’’ drugs, despite the fact that long-term application shows that they are
well tolerated and effective, if applied in the right manner. Rare side effects,
which cannot be uncovered in some thousands of animals or by treating a few
thousand patients under controlled conditions, end the use of otherwise suc-
cessful drugs, e.g. cerivastatin (Lipobayt) or rofecoxib (Vioxxt).107

So, the question is not, ‘‘Why aren’t we more successful with all these modern
technologies?’’ The question must be, ‘‘Where would we stand without gen-
omics, molecular biology, combinatorial chemistry, HTS, structure-based and
computer-aided approaches, and virtual screening?’’ The answer is that the
situation would be much worse. Indeed, in the long process of drug discovery
and development, from target discovery to launching the new drug, the phase
of lead discovery and optimization is nowadays a very fast and most effective
one.

How to increase success in drug research? We should merge the know-how of
classic medicinal chemistry with the new technologies and follow the recom-
mendations of George de Stevens, who formulated the following as long as 20
years ago. ‘‘The (drug) discovery process is at times slow, somewhat tedious,
always exciting and requiring patience, tenacity, objectivity and above all
intellectual integrity. Therefore, scientists, to be innovative, must work in a
corporate environment in which the management not only recognizes these
factors but makes every effort to let their importance be known to the scientists.
The people in research don’t have a need to be loved but they do need to feel
that they are understood and supported and not to be manipulated according
to short-term business cycles. . . . Drug discoveries are made by scientists
practicing good science. By and large these discoveries are usually made in a
company with an enlightened management which encourages its scientists with
freedom of action, freedom to think widely and to challenge dogma, and
freedom in risk-taking. Moreover, important drug discoveries are not made by
committees but by individual scientists working closely together, sharing ideas,
testing hypotheses, looking for new solutions to difficult problems, accepting
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negative results and learning from these results so that the next group of
compounds synthesized and tested will open the door to new and improved
therapy’’.108 This is more true than ever!

[December 2005]
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