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16.1  INTRODUCTION

Rational approaches have been applied in drug discovery for at least a 
century. A striking example, with a surprising outcome, was the design of 
acetylsalicylic acid (ASS). In 1897, Felix Hoffmann synthesized this com-
pound as a more tolerable “prodrug” of salicylic acid. Seventy years later it 
turned out that ASS has a unique mechanism of action through irreversibly 
inhibiting the enzyme cyclooxygenase. Many other drugs were developed 
from natural products and endogenous transmitters, by rational design. Now-
adays, the term “rational design” is most often—incorrectly—applied as a 
synonym for structure-based and computer-aided design, which developed 
in the early 1970s. With the progress in protein crystallography, Peter  
Goodford was the first to use protein 3D structures to design ligands that  
fit a protein binding site [1, 2]. Two successful applications were published 
by his group. 

(1) The 3D structure of the 2,3-diphosphoglycerate (DPG) complex of 
hemoglobin (Hb) served to derive simple aromatic dialdehydes that mimic 
the function of DPG as an allosteric modulator of the oxygen affinity of Hb. 
Some of the resulting compounds were as active and even more active than 
DPG, the natural ligand [1–3].

(2) Trimethoprim analogs were designed as dihydrofolate reductase 
(DHFR) inhibitors, starting from the observation that a certain distance from 
one methoxy group of trimethoprim there is the guanidinium group of an 
arginine, which can favorably interact with a newly introduced acidic group 
of the ligand. Analogs with significantly enhanced affinities to bacterial 
DHFR resulted from this approach [1, 2, 4].

However, in the very end both projects failed with respect to “drug design”: 
The Hb ligands do not permeate the erythrocyte membrane, and the trime-
thoprim analogs lost the high selectivity for bacterial DHFRs. 

The design of the angiotensin-converting enzyme (ACE) inhibitor capto-
pril [5, 6] may be considered as the first real success of structure-based drug 
design. Long-lasting attempts to derive bioavailable small molecule inhibitors 
from snake venom peptides were without much success. A breakthrough 
resulted from the 3D structure of carboxypeptidase A, another zinc protease, 
in complex with its inhibitor l-2-benzylsuccinic acid. A model of the ACE 
binding site guided the way to the weakly active ACE inhibitor lead structure 
N-succinoyl-l-proline (IC50 = 330 µM). The antihypertensive drug captopril 
1 (IC50 = 23 nM; Fig. 16.1) resulted after minor modifications, namely, the 
introduction of a methyl group (mimicking an alanine side chain) and an 
exchange of the carboxylate group with a sulfhydryl group [5, 6].

The topically active antiglaucoma agent dorzolamide 2 (Ki = 0.37 nM; Fig. 
16.1), a carbonic anhydrase inhibitor, may be considered as the first drug in 
the market that originated from the experimentally determined X-ray struc-
ture of its target protein. In the very last steps of its design, a favorable con-
formation of the six-membered ring was stabilized by the shift of a methyl 
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Figure 16.1  Some success stories of structure-based design.
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group of an N-alkyl substituent to this ring, in this manner enhancing the 
affinity of the molecule by a factor of two [7].

The very first HIV protease inhibitors in human therapy, saquinavir, indi-
navir, and ritonavir [8, 9], are often considered as typical examples of struc-
ture-based design. However, in reality they resulted from classic medicinal 
chemistry strategies (as did so many drugs in the decades before), starting 
from the peptide sequence of the cleavage site of the substrate. The 3D struc-
ture of HIV protease, which was available only relatively late, may have 
helped in understanding the details of the structure-activity relationships, but 
it did not contribute too much to the design. In the 1980s, several companies 
started to apply 3D structure-based ligand design as a strategic concept in 
drug discovery. The two most prominent companies, Agouron Pharmaceuti-
cals and Vertex Pharmaceuticals, were both successful in designing the HIV 
protease inhibitors nelfinavir 3 (Ki = 2.0 nM; Fig. 16.1) and amprenavir 4 (Ki 
= 0.6 nM; Fig. 16.1), respectively. These drugs resulted from structure-based 
design, but both also contain some structural elements that were discovered 
in the design of the first HIV protease inhibitors [8, 9]. 

An example of a straightforward 3D structure-based design was pub-
lished by von Itzstein and his group [10]. The enzyme neuraminidase (also 
called sialidase) is an essential coat protein of the influenza virus. It enables 
the virus to penetrate into the cell and to leave the cell after reproduction, 
by cleaving sialic acid from carbohydrate side chains at the cell surface. 
Correspondingly, the 3D structure of neuraminidase constituted a promis-
ing starting point for a structure-based design of anti-influenza drugs. 
Inspection of the surface of neuraminidase with the computer program 
GRID [11] indicated a pocket that could accommodate a relatively large 
positively charged group. Exchange of the –OH group of the weak transition 
state inhibitor Neu-5Ac-2en (Ki = 1 µM) with an ammonium group produced 
an inhibitor with Ki = 50 nM. If the larger guanidinium group was intro-
duced instead, the strong inhibitor zanamivir 5 resulted (Ki = 0.1–0.2 nM; 
Fig. 16.1) [10]. 

The design of estrogen receptor subtype-selective (ERα and ERβ) ligands 
is an exciting success story of homology modeling and structure-based design 
[12–14]. Hillisch et al. investigated the known 3D structure of the human ERα 
ligand-binding domain (LBD) to derive a homology model of the human ERβ 
LBD. There are minor but distinct differences in the estradiol binding cavity 
of the subtypes. Whereas the β side, “above” the steroid ring system, is rela-
tively narrow in ERα, because of a leucine side chain in position 384, there 
is more space in ERβ, because of a flexible methionine side chain. On the 
other hand, a methionine in position 421 of ERα is replaced by an isoleucine 
in ERβ, making the α side of ERβ, “below” the steroid, narrower. Estradiol 
(E2) analogs were designed to use these structural differences for subtype 
selectivity, producing the ERα- and ERβ-selective ligands 6 (40% E2 activity, 
300-fold selectivity) and 7 (50% E2 activity, 190-fold selectivity) (Fig. 16.1) 
[12–14].
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There are now many success stories of structure-based design of potent 
and selective ligands. As these examples have been extensively discussed in 
books [15–17] and reviews [e.g., 18–24], they are not be repeated here. When 
combinatorial chemistry and high-throughput screening developed as new 
approaches to synthesizing and screening thousands, tens of thousands, or 
even hundreds of thousands of new compounds, it was anticipated that this 
would generate an unprecedented number of new drugs, marking a milestone 
in drug discovery. However, the opposite was the case [25, 26]. Most often, 
screening hits could not be validated or optimized to leads and preclinical 
candidates. Many such compounds were too large and too lipophilic, too 
greasy, and they only showed up in the biological tests because of nonspecific 
binding. It was the merit of Chris Lipinski to take a closer look at the physi-
cochemical properties of biologically active molecules. By an inspection of 
2245 drugs and clinical candidates from the World Drug Index he formulated 
his now famous “rule of five” (Lipinski rule, Pfizer Ro5): To achieve perme-
ability (which is a precondition for oral bioavailability), a molecule should not 
violate more than one of the following rules: the molecular weight must not 
be larger than 500, lipophilicity should not be larger than log P = 5, and the 
molecule should not contain more than 5 hydrogen bond acceptors and not 
more than 10 N + O atoms (as a rough measure of hydrogen bond acceptors) 
[27]. However, the rule of five defines only druglike properties, not necessar-
ily druglike character, as expressed by structural features that are typical for 
drug molecules. This differentiation can be achieved by neural nets that have 
been trained with drugs (e.g., the World Drug Index or the MDDR) and 
nondrugs (e.g., the Available Chemicals Directory) [28, 29]. Such neural nets 
do not allow a discrimination between active and inactive compounds, but 
they separate druglike structures from mere chemicals, that is, from com-
pounds that contain atypical chemical features, providing about 80% correct 
assignments to each group.

Molecular modeling plays an important role in all steps of lead discovery 
and lead optimization. Several computer-aided techniques for automated 
database searches and docking into protein 3D structures have developed 
over time. If only ligand structures are available but no 3D structures of the 
biological target, as until recently was the case for all membrane-embedded 
proteins, pharmacophore generation and 2D or 3D searches in structural 
databases are the method of choice [e.g., 30–33]. Starting with the programs 
DOCK [34] and LUDI [35], the docking of ligands into the binding sites  
of various proteins, for which 3D structures are available, is now a well- 
established technique [e.g., 36–45]. A certain problem is the poor reliability 
of the scoring functions that rank the docking results [e.g., 46–49]. Extensive 
comparisons of different docking programs and scoring functions [e.g., 50–
53], to rediscover known ligands within 3D databases provide evidence that 
there is no unique solution to the problem. Certain docking and scoring com-
binations are appropriate for one target, whereas they fail with another target. 
Consensus scoring, that is, the simultaneous use of several different scoring 
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functions, has been proposed to solve this problem [54, 55]. However, for the 
most common programs the quality of the obtained results seems to depend 
more on the experience and skill of the modeler than on the options used. 
Scoring functions also tend to overestimate the affinity of large molecules 
[56]. In this context, a posteriori inspection of all docking results is of utmost 
importance. 

By combination of several techniques, from simple filters and pharmaco-
phore searches to docking and scoring, virtual screening developed as a new 
paradigm in computer-aided ligand design. In contrast to real, “wet” biologi-
cal screening, virtual screening opens new dimensions: It offers a number of 
different approaches for the selection of compounds or sublibraries out of 
huge in-house inventories, compound libraries of commercial suppliers, or 
virtual libraries, that is, structures that exist only in the computer, not  
in reality. Such techniques are rule-based or quantitative filters, neural  
nets, QSAR, 2D and 3D pharmacophore-derived models, and docking and 
scoring.

Drug research has often been compared with the search for a needle in a 
haystack. Indeed, this comparison is valid, for two reasons. First, huge numbers 
of candidates must be investigated in drug research to discover a lead that 
can be further optimized to a drug candidate. Second, special technologies 
should be applied to find a needle in a haystack, for example, a magnet; in 
the very same manner, virtual screening solves the haystack problem of drug 
discovery by searching for compounds with favorable properties, be it drug-
like character, bioavailability, the fit to a pharmacophore, or the complemen-
tarity to a binding site. Despite the fact that virtual screening is a relatively 
young discipline, it has already been reviewed in books [57–59] and in many 
dedicated publications [60–77]. 

Retrospective virtual screening studies, in which only known actives are 
retrieved, are not included in this review, as well as mere enrichment studies 
and virtual screening, from which some predictions but no experimental 
confirmation have resulted. Only a few pharmacophore studies without addi-
tional filters or docking and scoring are included. To keep this chapter to a 
reasonable size, no details or references are provided for the individual bio-
logical targets and test systems, lead structures, databases, compound collec-
tions and libraries, and computer programs that were used in the virtual 
screening; for all these details the reader is referred to other chapters of this 
book and to the references of the individual case studies (some references for 
the most popular computer programs are given in Section 16.6).

Because most often several different techniques of virtual screening are 
applied in certain combinations, the discussed examples are not ordered by 
the applied approach but according to the biological targets. Nevertheless, 
ligand-based approaches and/or homology modeling and docking into a 
protein 3D model are in the foreground for receptors and ion channels, 
whereas docking into experimental 3D structures is preferentially applied for 
enzymes and other soluble proteins.
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16.2  RECEPTORS

16.2.1  G Protein-Coupled Receptors

a1A Adrenergic Receptor.  A model of the α1A adrenergic receptor was 
generated by ligand-supported homology modeling, based on the high-
resolution X-ray structure of bovine rhodopsin and also using mutational and 
ligand SAR data. Virtual screening of the Aventis in-house compound 
repository was then performed in a stepwise manner. First, compounds  
with more than nine rotatable bonds and molecular weight >600 were 
eliminated; then 22,950 compounds were selected, using a α1A receptor ligand 
pharmacophore hypothesis and the program Catalyst. These compounds 
were docked into the α1A receptor homology model with the program GOLD 
and scored with PMF, after calibration of the docking procedure and 
evaluation of different scoring functions with a data set of 50 α1A receptor 
antagonists and 990 druglike molecules from the MDDR database. The top-
scoring 300 compounds were clustered according to their Unity fingerprint 
similarity, and a diverse set of 80 compounds was tested in a radioligand 
displacement assay. Of 37 compounds with Ki <10 µM, the most active hit was 
compound 8 (Ki = 1.4 nM; Fig. 16.2) [78].

Dopamine D3 Receptor.  The 3D structure of the dopamine 3 (D3) subtype 
receptor was also modeled from the X-ray structure of rhodopsin, with 
extensive structural refinement and validation using experimental data. A D3 
pharmacophore model was derived from 10 potent and moderately selective 
known D3 receptor ligands. This pharmacophore model served to search 
250,251 compounds from the National Cancer Institute (NCI) 3D database 
with the program Chem-X. The 6727 resulting hits were docked into four 
major conformational clusters of the D3 receptor, and ranking of the results 
was performed with the scoring function of the Cerius2 program. As an 
independent validation, 20 known D3 ligands were added to the set of 6727 
compounds. The hit list of 2478 potential ligands was then filtered for known 
chemotypes. After removal of all compounds that are structurally similar to 
known D3 receptor ligands, 1314 candidates remained. Of 60 compounds 
requested from the NCI, only 20 were available in sufficient quantity. Eight 
of them had Ki values below 500 nM, for example, compound 9 (Ki = 11 nM; 
Fig. 16.2) [79].

Endothelin A Receptor.  A common pharmacophore for endothelin A (ETA) 
receptor ligands was derived from a cyclic pentapeptide and a triterpene ester. 
The moderately selective lead structure 2,4-dibenzyloxybenzoic acid (IC50 
ETA = 9 µM, ETB < 20% at 30 µM) was discovered by a 3D pharmacophore 
search in 60,000 compounds of the Rhone Poulenc Rorer UK corporate 
database with the ChemDBS-3D system [80]. The highly selective ETA 
receptor ligand 10 (IC50 ETA = 5 nM, IC50 ETB >10 µM; Fig. 16.2) resulted 
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from a refined pharmacophore hypothesis and further chemical optimization 
[81, 82].

Another research group generated two pharmacophore models of ETA-
selective receptor antagonists from a training set of 18 ETA antagonists by 
using the HypoGen and HipHop options of the program Catalyst. The best 
HypoGen hypothesis had five pharmacophoric features: two hydrophobic 
features, one aromatic ring, one acceptor, and one negative ionizable func-
tion. The highest-scoring HipHop model had six features: three hydrophobic 
features, one aromatic ring, one acceptor, and one negative ionizable group. 
The predictive power of the quantitative models was validated by their ability 
to extract a test set of 30 known ETA antagonists from the World Drug Index. 
A 3D search of 55,000 compounds in the Maybridge database retrieved 498 
hits from the HypoGen hypothesis and 5 hits from the HipHop hypothesis. 
After visual inspection, six hits from both analyses were selected for testing, 
of which four were biologically active, for example, compound 11, Z-Val-Tyr-
OH (IC50 = 220 nM; Fig. 16.2) [83].

Melanin-Concentrating Hormone Type 1 Receptor.  A “drug space” was 
defined by a BCUT metrics analysis of 81,560 drugs and druglike molecules. 
The resulting five-dimensional model (hydrogen bond donor and acceptor, 
two terms for polarizability, and charge) was used to locate the space for 
peptide G protein-coupled receptor (GPCR) ligands. Analysis of a virtual 
library of 9 million compounds, constructed from 19 predefined amine 
templates, yielded 2025 hits. After synthesis and biological testing, potent 
ligands of the GnRH, galanin, MC4, melanin-concentrating hormone (MCH), 
orexin, and other peptide GPCRs resulted, with a 4.5-fold (GnRH receptor) 
to 61-fold (MC4 receptor) enrichment of active analogs, as compared to a 
random selection of screening compounds from the Neurocrine Biosciences 
in-house compound repository. Out of several micromolar and submicromolar 
ligands of the MCH1 receptor, compound 12 (Ki = 360 nM; Fig. 16.2) had the 
highest affinity [84]. 

Muscarinic M3 Receptor.  A pharmacophore model was derived from known 
M3 receptor antagonists, using the program DISCO, and 3D searching was 
performed by Unity 3D in the Astra Charnwood in-house compound 
repository and the databases of several commercial suppliers. The 172 
compounds that fitted the pharmacophore were screened for their  
M3-antagonistic potency. Several compounds with micromolar and even 
submicromolar activities resulted, for example, compound 13 (A50 M3 
antagonism ≈ 0.2 µM; pA2 = 6.67; Fig. 16.2) [85].

Neurokinin-1 Receptor.  A homology model of the neurokinin-1 (NK1) recep- 
tor was built from the X-ray structure of rhodopsin, using the MOBILE 
(modeling binding sites including ligand information explicitly) approach. In 
this procedure, a preliminary model is generated, which is afterwards refined 

c16.indd   386 2/28/2006   6:10:41 PM



by docking known ligands into the model. From this model a pharmacophore 
hypothesis was derived to search eight structural databases for molecules that 
fit this hypothesis. The workflow shows in an elegant manner how to perform 
stepwise virtual screening. From the 826,952 compounds of the various 
databases only 419,747 (51%) molecules passed a filter for molecular weight 
<450 and less than eight rotatable bonds; 131,967 molecules (16%) had the 
requested number of hydrophobic, donor, and acceptor properties, and 36,704 
molecules (4.4%) fitted the pharmacophore hypothesis in 2D and 3D (database 
searches with Unity). On the basis of excluded volumes, 11,109 (1.34%) 
structures remained for docking into the modeled NK1 receptor binding site, 
using FlexX-Pharm; the resulting docking poses were ranked with the 
knowledge-based scoring function DrugScore. The 1000 highest-scoring 
ligands were force field-minimized in the binding pocket and visually inspected 
for certain typical receptor-ligand interactions and features: (1) an amino-
aromatic interaction between His1975.39 and an aromatic ring; (2) a stacking 
between two aromatic rings; (3) a hydrogen bond between Gln1654.60 and an 
acceptor group of the ligand; (4) similarity to known NK1 receptor ligands in 
the β4-hairpin region; and (5) a small number of rotatable bonds. Of seven 
compounds for biochemical screening, compound 14 (Ki = 251 nM; Fig. 16.2) 
showed submicromolar affinity [86, 87]. This result is especially remarkable 
because compound 14 does not contain the “magic” 3,5-bis-trifluoromethyl 
substitution pattern of most highly active NK1 receptor ligands. 

NPY5 Receptor.  A pharmacophore hypothesis for NPY5 receptor ligands 
was derived from three known ligands and used for a Catalyst 3D search in 
the Hoffmann-La Roche in-house compound repository. Of 632 retrieved 
molecules, 31 had IC50 values <10 µM. The most interesting compound was  
a substituted aminothiazole (IC50 = 40 nM), which after two cycles of chem- 
ical optimization resulted in some more nanomolar ligands, for example, 
compound 15 (IC50 = 2.8 nM; Fig. 16.2) [88].

Purinergic A2A Receptor.  The CATS (chemically advanced template search) 
descriptor compares molecules by the topological pattern of their phar- 
macophore features [89]. Based on these descriptors, a self-organizing map 
(SOM) was generated from biologically active molecules, including purinergic 
receptor antagonists. Virtual libraries were designed from a triazolopyridine 
carboxylic acid and secondary amines. Projection of the resulting amides onto 
this map identified several hits with high affinity and selectivity, the most 
selective A2A antagonist being compound 16 (Ki A2A = 2.4 nM, Ki A1 = 
292 nM; Fig. 16.2) [90].

Urotensin II Receptor (GPR14).  The vasoactive cyclic peptide urotensin II 
(U-II) is the endogenous ligand of the G protein-coupled orphan receptor 
GPR14. Structure-activity relationships from 25 peptide analogs, which 
mobilize intracellular calcium in GPR14-transfected CHO cells, and the 
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NMR 3D structure of the undecapeptide U-II generated a ligand phar- 
macophore hypothesis that served as query for the virtual screening of the 
Aventis in-house compound repository. Active leads from six different 
chemical classes could be identified by the 3D search, for example, compound 
17 (EC50 = 400 nM; Fig. 16.2) [91].

16.2.2  Nuclear Receptors

Retinoic Acid Receptor.  A 3D structural model of the inactive conformation 
of the retinoic acid receptor (RAR) α-subtype (RARα) was developed from 
the RARγ 3D structure, bound to the agonist all-trans-retinoic acid, and the 
estrogen receptor α-subtype (ERα), bound to an antagonist. After validation 
of the method with known agonists and antagonists, 153,000 ACD compounds 
were docked into the RAR binding site with full flexibility of the ligand and 
the amino acid side chains of the protein, using the Molsoft Internal 
Coordinates Mechanics (ICM 2.7) program. Two novel RAR antagonists 
were discovered, for example, compound 18 (55% inhibition at 20 µM; Fig. 
16.3) [92]; comparable results were obtained with all three human isoforms: 
RARα, RARβ, and RARγ. 

In a similar investigation, a model of the active RARα conformation was 
developed from the agonist-bound RARγ conformation. Docking of the ACD 
compounds as above but with a refined procedure, considering all atoms of 
the binding site, resulted in 5364 high-scoring hits. The 300 compounds with 
the lowest binding energy (i.e., highest predicted affinity) were visually 
inspected for shape complementarity, hydrogen bonding network, ligand con-
formations, and possible van der Waals clashes. Finally, 30 compounds were 
selected for biological testing. Despite the fact that an RARα 3D model was 
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used for the docking, the two most active hits have a higher affinity to RARβ 
than to RARα, for example, compound 19 (EC50 RARβ = 200 nM, EC50 
RARα = 4 µM; Fig. 16.3) [93].

Thyroid Hormone Receptor.  The 3D structure of the estrogen antagonist 
raloxifen, bound to the estrogen receptor α-subtype, was used to derive the 
“antagonist-binding” conformation of the thyroid receptor β-subtype (TRβ) 
from the 3D structure of an agonist complex of the TRβ ligand binding 
domain. Five grid potential representations of the binding site were gener- 
ated by the Molsoft ICM virtual library screening module, accounting for 
hydrophobicity, van der Waals boundaries, hydrogen bonds, and electrostatic 
potential of the ligand binding site. The 190,000 rule of five-compatible 
compounds, out of 250,000 ACD compounds, were docked four times into 
the receptor grids by the ICM method, and the lowest score (i.e., best fit) of 
each ligand was retained. The geometry of the top 1000 ligand-protein 
complexes was refined, and the remaining 300 top-scoring complexes were 
visually inspected. Of 100 biologically tested compounds, 14 turned out to be 
TR antagonists. The most active hit (90% inhibition at 20 µM) served as the 
lead to construct a virtual library of a further 101 analogs. After docking, 
eight high-scoring compounds were synthesized and tested; all inhibited TR 
to 10–84% at 5 µM, the most active antagonist being compound 20 (IC50 = 
0.75 µM; Fig. 16.3) [94]. 

16.3  ENZYMES

16.3.1  Kinases

Akt 1 (Protein Kinase Bα , PKBa ).  The three isoforms of protein kinase B 
are Akt 1 (PKBα), Akt 2 (PKBβ), and Akt 3 (PKBγ). A 3D structure of the 
binding site was extracted from the X-ray structure of a ternary complex of 
Akt1, a nonhydrolyzable ATP analog, and a peptide substrate derived from 
the binding sequence of glycogen synthase kinase 3β (GSK-3β). About 50,000 
ChemBridge compounds were docked into this binding site in a flexible 
manner, using the program FlexX. The top 2000 compounds were ranked 
with the consensus scoring function CSORE; the top 100 compounds from 
the knowledge-based scoring function DrugScore, the top 200 compounds 
from GoldScore, and the top 200 compounds from ChemScore ranking were 
biologically tested. Only one hit, compound 21 (IC50 = 4.5 µM, Ki = 3.9 µM; 
Fig. 16.4) resulted. To improve the result, the 4000 top-ranking compounds 
from FlexX and DrugScore were ranked according to GoldScore and 
ChemScore. Two hundred compounds were selected, which showed up within 
the top 700 rankings of both functions. From this set, 100 compounds were 
eliminated after visual inspection and 100 compounds were biologically 
tested. In addition to compound 21 another low micromolar Akt1 inhibitor, 
compound 22 (IC50 = 2.6 µM, Ki = 1.1 µM; Fig. 16.4), resulted [95].
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Figure 16.4  Kinase inhibitors from virtual screening.
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Bcr-Abl Tyrosine Kinase.  A database of 200,000 compounds of the ChemDiv 
compound collection was converted into 3D format and docked into the 
binding site of bcr-abl tyrosine kinase, using the program DOCK 4.0.1 for 
flexible docking. The 1000 top-scoring compounds were clustered by their 
molecular fingerprints. After filtering by the Lipinski rule of five, 15 
compounds from diverse sets were selected for biological testing; eight of 
these compounds inhibited K562 tumor cell growth with IC50 values between 
10 and 200 µM, for example, compound 23 (IC50 = 24 µM; Fig. 16.4) [96].

Checkpoint Kinase 1.  A subsection of the AstraZeneca in-house compound 
collection, containing 560,000 compounds, was used for virtual screening for 
checkpoint kinase 1 (Chk-1) inhibitors. Compounds with molecular weight 
>600 or with more than 10 rotatable bonds were removed, leaving about 
400,000 compounds. Protonation and tautomeric states were corrected with 
the in-house program Leatherface. Then 3D structures were generated with 
Corina, with explicit enumeration of stereocenters (generating a maximum of 
8 stereoisomers per molecule), and a multiconformer database was produced, 
using the program Omega. A 3D pharmacophore search was performed with 
the in-house program Plurality to eliminate compounds that do not have the 
typical binding motif for the kinase hinge region. The remaining 199,000 
compounds (1 conformer per molecule) were flexibly docked into the ATP 
binding site of Chk-1, using the program FlexX-Pharm, which considers full 
flexibility of the ligand and demands certain interactions with the binding site, 
in this case to the backbone NH of Cys 87 and the backbone carbonyl of  
Glu 85. An enrichment study for known cyclin-dependent kinase 2 (Cdk2) 
inhibitors served to select the best consensus scoring, resulting in a combination 
of the FlexX and PMF scoring functions. Visual inspection of the 250 highest-
scoring hits for unfavorable interactions with the binding site or compounds 
with unrealistic conformations resulted in a list of 103 compounds for 
biological testing. Inhibitory activities of 36 hits were in the range of 110 nM 
to 68 µM, for example, compound 24 (IC50 = 450 nM; Figure 16.4) [97].

Cyclin-Dependent Kinase 2.  The flexible docking program LIDAEUS 
(developed from the program Sandock) was used to dock a database of about 
50,000 commercially available compounds into the known 3D structure of the 
kinase Cdk2, to search for new chemotypes of Cdk inhibitors. Biochemical 
screening of 200 hits provided moderately active inhibitors. Structure-based 
modification led to the selective Cdk2 inhibitor compound 25 (IC50 Cdk2/
cyclin E = 0.9 µM; IC50 Cdk4/cyclin D1 = 5.5 µM [98]; Ki Cdk2 = 0.29 µM, Ki 
Cdk4 > 20 µM [99]; Fig. 16.4) with antiproliferative activity against tumor cells 
in vitro and in vivo. Further chemical optimization of compound 25 produced 
the moderately selective nanomolar inhibitor compound 26 (Ki Cdk2 = 2 nM, 
Ki Cdk4 = 53 nM; Fig. 16.4) [99].
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Cyclin-Dependent Kinase 4.  A homology model of the cyclin-dependent 
kinase Cdk4 was constructed from the X-ray structure of activated Cdk2, to 
perform a structure-based design of Cdk4 inhibitors. For this purpose the de 
novo design program LEGEND was combined with the program SEEDS 
(system for evaluation of availability of essential structures generated by de 
novo ligand design programs). LEGEND constructs ligands within the 
binding site of a protein on an atom-by-atom basis, and SEEDS extracts 
relevant scaffolds from the generated ligands to search databases for 
commercially available or synthetically feasible building blocks or analogs. 
On searching the ACD, 4884 compounds with molecular weight <350 were 
retrieved. After visual inspection, 382 compounds were purchased and tested 
in a cyclin D-Cdk4 complex assay. Eighteen compounds with IC50 values 
<500 µM were identified and clustered into four classes of new scaffolds. A 
diarylurea class could be further improved in biological activities by a 
dedicated library design. A docking study confirmed the binding mode of 
these ligands in the ATP binding pocket of the Cdk4 model. Further 
modifications led to the Cdk4 inhibitor compound 27 (IC50 = 42 nM; Fig. 16.4) 
[100].

Glycogen Synthetase Kinase.  Inhibitors of glycogen synthase kinase 3 (GSK-
3), a serine protein kinase, may play a role in the treatment of diabetes. To 
search for potential ligands, 32 different virtual libraries with up to about  
1.25 million compounds per library were generated. Then 47 hits from GSK-3 
inhibitor screening were compared with up to 10,000 compounds from each 
of these libraries. CATS-2, a modification of the CATS descriptor, which 
compares molecules by the topological pattern of pharmacophore features 
assigned to atom pairs [89], was used for similarity search of each of the 
screening hits against 137,842 molecules that were randomly selected from 
the different virtual libraries. Whereas a classic 2D fingerprint similarity 
search did not provide any hits with a Tanimoto index >0.85, the CATS-2 
search indicated that one of the virtual libraries had a high similarity to the 
screening hits. Filtering, library syntheses, and further optimization, including 
scaffold hopping, led to compound 28 (IC50 = 0.39 µM; Fig. 16.4) [101].

p56 Lymphoid T Cell Tyrosine Kinase.  The p56 lymphoid T cell tyrosine 
kinase (Lck) participates in protein-protein interactions through its Src 
homology-2 (SH2) domain. Virtual screening was performed, using the X-ray 
structure of the Lck SH2 domain complex with a pYEEI (pY+3) peptide. A 
3D database of 2 million commercially available compounds was built with 
the 3D generator CORINA and docked into the pY+3 binding site with the 
program DOCK, using flexible ligands based on the anchored search method. 
Some further filters selected 25,000 compounds that were more rigorously 
docked by simultaneous energy minimization of the anchor fragment during 
the iterative build-up procedure. Two sets of 1000 compounds were selected 
on the basis of either the total interaction energy or a molecular weight-
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normalized energy score, to account for the often observed overprediction of 
large molecules cf. 56]. Similarity clustering was performed for both sets, and 
compounds from the different clusters were selected according to their 
physicochemical properties. Thirty-four of 196 selected compounds, without 
a phosphotyrosine (pY) or a structurally related feature, inhibited Lck. 
Twenty-four of the active compounds were tested for their modulation of 
biological function: Thirteen showed inhibitory activity in a lymphocyte 
culture assay, for example, compound 29 (∼75% inhibition of 3H-thymidine 
uptake at 10 µM; Fig. 16.4) [102].

Protein Kinase CK2 (Casein Kinase II).  A homology model of human 
protein kinase CK2 (casein kinase II) was generated from the 3D structure 
of the highly homologous CK2 of Zea mays. Docking of 400,000 compounds 
of the in-house corporate collection of Novartis was performed with the 
program DOCK. The results were filtered according to the following criteria: 
Only compounds showing the typical hydrogen bond interaction to the hinge 
region of the kinase binding site were selected; results were ranked by a 
second scoring function and visually inspected for unrealistic conformations 
or unfavorable interactions. Four of twelve biologically tested compounds 
showed >50% inhibition at 10 µM, the most potent inhibitor being compound 
30 (IC50 = 80 nM; Fig. 16.4) [103].

TGFb Receptor (TbRI) Kinase.  TGFβ receptor (TβRI) kinase is activated 
by its association with the TGFβ type II receptor (TβRII). The activated 
kinase phosphorylates Smad substrates, which then induce TGFβ-dependent 
gene expression. The X-ray crystal structure of the unphosphorylated 
cytoplasmatic region of TβRI in complex with FKBP12, an inhibitor of the 
TGFβ pathway, served for a structure-based virtual screening to discover 
novel inhibitors. A starting point of the design was a pharmacophore 
hypothesis, derived from the experimental X-ray structure of the 2,4,5-
triarylimidazole SB 203580 (IC50 = 30 µM) in the ATP binding site of TβRI. 
The pharmacophore search, which also considered shape constraints, iden- 
tified 87 compounds from a commercially available database of 200,000 
molecules, for example, compound 31 (IC50 = 27 nM, Kd = 5 nM; Fig. 16.4) 
[104].

16.3.2  Proteases

Cathepsin D.  The design of inhibitors of the aspartyl protease cathepsin D 
started from a virtual library of peptide analogs that contained the typical 
hydroxyethylamine isoster for the cleavable peptide bond. As the availability 
of starting materials would have generated a library of about 1 billion 
compounds, virtual screening was applied to reduce this multitude of 
candidate structures to a reasonable number. The backbone of a peptide 
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analog was docked into the active site of cathepsin D in the same pose as the 
natural product inhibitor pepstatin. Then fitting side chains for three different 
pockets of the binding site were selected by the program CombiBuild, which 
was developed from the program DOCK. A library of 1000 compounds 
resulted from this procedure, which in the following virtual screening was 
compared with a diversity-oriented library of peptide analogs. Whereas the 
directed library produced seven hits with IC50 values <100 nM, only one such 
hit resulted from the diversity-oriented library. In a further step, the best 
results from the directed library were the starting point for another directed 
library of 39 compounds. The inhibitor with the highest activity was compound 
32 (Ki = 9 nM, IC50 = 14 nM; Fig. 16.5) [105].

Falcipain-2.  The 3D structures of the binding pockets of protozoal cysteine 
proteases are highly conserved. Homology models of the malarial cysteine 
proteases falcipain-2 and falcipain-3 were used for stepwise virtual screen- 
ing of 241,000 compounds of the ChemBridge database. First, filters were 
applied to eliminate metal complexes and counterions, to neutralize charged 
compounds, and to eliminate compounds with inappropriate ADME 
properties, poor solubility, and violations of the Lipinski rule of five. 3D 
structures of the 60,000 compounds of this filtered database were generated 
and subjected to docking with the program GOLD, using three different 
protocols that were generated by docking a vinyl sulfone inhibitor into the 
cysteine protease cruzain. The first two rounds of docking, with 7–8 times 
and 2 times speed-up as compared to the standard protocol, were performed 
with the somewhat narrower binding pocket of falcipain-3. The remaining 
1500 candidates were docked into both protein binding pockets, using the 
standard mode settings of GOLD. In both cases 10 known vinyl sulfone 
inhibitors were included, which showed up in the 20 highest-ranking ligands. 
The top 200 common hits for both proteins were visually inspected for 
reasonable geometry of the ligand, proximity of an electrophilic center (if 
present) to the SH group of the catalytic cysteine, and complementarity of 
the ligand and the protein. Of 100 selected compounds, 84 were biologically 
tested to identify 24 diverse inhibitors, of which 12 compounds are dual 
inhibitors of falcipain-2 and falcipain-3, with IC50 values between 1 and 
62 µM; although many of these inhibitors are either Schiff bases or hydrazones, 
some of them have druglike structures, for example, compound 33 (IC50 
falcipain-2 = 6.2 µM, IC50 falcipain-3 = 12.0 µM; Fig. 16.5) [106]. Five 
compounds additionally inhibited Leishmania donovani cysteine protease, 
whereas four other, noninhibiting compounds showed strong antileishmanial 
activity in L. donovani promastigotes, obviously by a different mechanism 
of action.

HIV Protease.  Docking of the 3D structures of the Cambridge Structural 
Database into the HIV protease binding site, by shape and to some extent by 
chemical complementarity, was performed with an early version of the 
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Figure 16.5  Protease inhibitors from virtual screening.
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program DOCK. Of the 200 top-scoring hits, 50 were commercially available 
and 15 were tested for their HIV protease inhibition. The neuroleptic 
haloperidol had an IC50 vs. HIV-1 protease of 100 µM but was toxic at high 
concentrations [107, 108]. Further chemical optimization resulted in the 
haloperidol derivative compound 34 (Ki HIV-1 protease = 15 µM, Ki HIV-2 
protease = 100 µM; Fig. 16.5) [108].

A pharmacophore hypothesis for HIV protease inhibitors was derived at 
Dupont from the X-ray structures of several inhibitor complexes and the 
modeled binding mode of vicinal diol inhibitors. A 3D database search 
yielded a substituted terphenyl compound, which suggested as starting point 
a six- or seven-membered ring, with a carbonyl group to position a structural 
water mimic and one or two hydroxy groups to interact with the catalytic 
aspartates. By extensive structural modification cyclic ureas, for example, 
compound 35 (Ki = 0.27 nM, IC50 = 36 nM; Fig. 16.5) [109], resulted from 
which even more active but also poorly soluble inhibitors were derived e.g., 
[110]. 

Plasmepsin II.  The malarial aspartyl protease plasmepsin II has a significant 
homology (35%) to cathepsin D. Correspondingly, the very same approach 
as for the cathepsin D inhibitors (see above) was followed. The best inhibitors 
have Ki values of 2–10 nM, a molecular weight <650, moderate selectivity vs. 
cathepsin D, the most closely related human protease, log P values <4.6, and 
no apparent binding to human serum albumin, for example, compound 36 
(Ki plasmepsin II = 2.0 nM, Ki cathepsin D = 9.8 nM; Fig. 16.5) [111]. 

SARS CoV 3C-Like Proteinase.  For the screening for SARS (severe acute 
respiratory syndrome) 3C-like proteinase A inhibitors, a “flexible” 3D model 
was built by homology modeling and molecular dynamics, starting from the 
known 3D structure of TGEV (transmissible-gastroenteritis virus) coronavirus 
3C-like proteinase. Docking of 630,000 compounds from the ACD, MDDR, 
and NCI 3D databases was performed with the program DOCK 4.01. The 
docking hits were further ranked by a pharmacophore model, consensus 
scoring, and “drug-likeness” filters; 40 compounds were biologically tested. 
Three of these inhibited SARS 3C-like proteinase with Ki values below 
200 µM, for example,. the known calmodulin antagonist calmidazolium 37 
(Ki = 61 µM; Fig. 16.5) [112].

Thrombin.  New thrombin inhibitors were designed by a two-step procedure 
at Hoffmann-La Roche. p-Amino-benzamidine was the top-scoring ligand 
from a docking of 5300 commercially available amines into the recognition 
pocket of the serine protease thrombin. The link mode of the de novo design 
program LUDI connected this amine with 540 aldehydes by a reductive 
amination. Ten of the 100 top-scoring candidates were synthesized and tested; 
five bind with nanomolar affinities, for example, compound 38 (Ki thrombin 
= 95 nM, Ki trypsin = 520 nM; Fig. 16.5) [113, 114].
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16.3.3  Other Hydrolases

Acetylcholinesterase.  The 3D structure of an acetylcholinesterase (AChE) 
complex with the natural product galanthamine was used to derive a Catalyst 
pharmacophore model with the program LigandScout. The pharmacophore, 
containing one donor, one acceptor, and two hydrophobic features, served to 
screen a 3D multiconformational database of more than 110,000 natural 
products. Among the observed hits were the coumarin scopoletin 39 (IC50 ≈ 
170 µM; Fig. 16.6) and its glucoside scopolin. In vivo, both compounds increase 
the extracellular acetylcholine concentration in rat brain to about 170% and 
300% (intracerebrovascular application of 2 µmol compound), which is in the 
same range as the effect observed from galanthamine [115].

Adenylyl Cyclase (Edema Factor and CyaA).  The adenylyl cyclases edema 
factor (EF) and CyaA are toxins of the pathogenic bacteria Bacillus anthracis 
and B. pertussis, which cause anthrax and whooping cough, respectively. The 
3D structure of EF served to dock 205,226 ACD compounds into the  
catalytic site with a university version of the program DOCK. From 24  
tested compounds two pyrazoloquinazolines could be identified as selective 
inhibitors of EF and CyaA, for example, compound 40 (Ki EF ≈ 20 µM, IC50 
EF = 90 µM; Ki CyaA ≈ 20 µM, IC50 CyaA = 80 µM; Fig. 16.6) [116].
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Figure 16.6  Other hydrolase inhibitors from virtual screening.
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AmpC b -Lactamase.  A map of “hot spots” was constructed from the X-ray 
structure of AmpC β-lactamase and a university version of the program 
DOCK was used to search for noncovalent inhibitors in 229,810 compounds 
of the ACD database. Of 56 tested compounds three had Ki values <650 µM, 
for example, compound 41 (Ki = 26 µM; Fig. 16.6) [117]. The experimental 
X-ray structure of its complex with AmpC β-lactamase closely resembles the 
predicted binding mode.

Phosphodiesterase 4  Didier Rognan and his group used a ”Scaffold-linker-
functional group“ (SCF) approach to design a virtual combinatorial library 
of analogs of the phosphodiesterase 4 (PDE4) inhibitor zardaverine (IC50 = 
800 nM). All molecules were constructed from the invariable scaffold of 
zardaverine (with the exception of minor modifications) and a diverse set of 
variable linkers and building blocks. As the program FlexX produced the best 
results in the docking of zardaverine itself, this program was also used for the 
docking of all analogs. Nine molecules, out of 320 candidates, were synthesized 
and tested. Compound 42 (IC50 = 0.9 nM; Fig. 16.6) was about 900 times more 
active than the original lead compound zardaverine [118].

Protein Tyrosine Phosphatase 1B.  At Pharmacia, the in-house compound 
collection of 400,000 compounds was screened against protein tyrosine 
phosphatase 1B (PTP1B), resulting in 85 inhibitors (0.021%) with a validated 
IC50 < 100 µM; the most active compound had an IC50 = 4.2 µM. Shoichet and 
his group compared the efficacy of this high-throughput screening with 
docking and scoring [119]. Virtual screening was performed with 235,000 
commercially available compounds from three different sources. After 
selection of only molecules with 17–60 nonhydrogen atoms, 165,581 compounds 
were docked into the 3D structure of PTB1B, using the program DOCK 3.5. 
Out of 365 high-scoring molecules, 127 (= 34.8%) inhibited PTP1B with an 
IC50 <100 µM, for example, compound 43 (IC50 = 4.1 µM; Fig. 16.6) [74, 119]. 
The authors claim that the docking hits were more druglike than the screening 
hits, with respect to their physicochemical properties.

16.3.4  Oxidases/Reductases

Aldose Reductase.  The ADAM&EVE docking program was used to screen 
about 120,000 structures of the ACD 3D database as potential aldose 
reductase inhibitors. Only one 3D conformation was generated for every 
molecule, but the ADAM&EVE program performed a systematic confor- 
mational search in the docking process, optimizing the conformation by a 
simplex method. After passing several filters (e.g., MW > 250, at least 1 ring 
system), total interaction energies were calculated and the resulting hits were 
visually inspected. An active hit served as a starting point for the dedicated 
design of analogs, resulting in compound 44 (IC50 = 0.21 µM; Fig. 16.7) as the 
most potent inhibitor [120].
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Among different 3D structures of aldose reductase, one with an additional 
open hydrophobic pocket was selected to search for ligands with additional 
aromatic rings. Molecular docking of 127,000 molecules of the NCI database 
into the binding pocket was performed with the program DOCK. The 1270 
best-scoring compounds were clustered into chemical families, and a further 
selection was performed according to the interaction of the ligands with two 
key amino acids, Tyr48 and His110. Of the original 1270 molecules, 25 were 
selected; the most similar analogs in the ACD were taken for those that were 
commercially not available. Micromolar and submicromolar selective inhibi-
tors resulted from biological testing (and chemical optimization of a nitro 
compound), for example, compounds 45 (IC50 aldose reductase = 28 µM, alde-
hyde reductase inhibition: 6% at 45 µM; Fig. 16.7), 46 (IC50 aldose reductase = 
4.8 µM, IC50 aldehyde reductase = 48 µM; Fig. 16.7). and 47 (IC50 aldose reduc-
tase = 0.58 µM, aldehyde reductase: 13% inhibition at 27 µM; Fig. 16.7) [121].

Gerhard Klebe and his group used a high-resolution 3D structure of aldose 
reductase (0.66-Å resolution) for a stepwise virtual screening for more drug-
like inhibitors. First, 259,747 ACD compounds were filtered according to 
certain properties: presence of a carboxylic group or its isoster and compli-
ance with the Lipinski rule of five (but restricted to MW < 350 and a number 
of rotatable bonds <9). This resulted in 12,545 candidates that were filtered 
by a pharmacophore search, using the program Unity and a pharmacophore, 
which was derived from the aldose reductase binding site with the programs 
SuperStar and the knowledge-based scoring function DrugScore. The 1261 
fitting compounds were flexibly docked with the program FlexX. In the 
scoring procedure, a correction had to be applied to avoid overprediction of 
the affinity of large, flexible molecules [cf. 56]. The highest-scoring 216 com-
pounds were clustered and visually inspected for the binding conformation, 
the surface complementarity of the ligand and the protein, and for unfilled 
space along the protein-ligand interface. A subset of nine carboxylic acids was 
selected for acquisition and biological testing. The most active hit was com-
pound 48 (IC50 = 2.4 µM; Fig. 16.7) [122].

Dihydrofolate Reductase.  A 3D model of the dihydrofolate reductase 
(DHFR) domain of the bifunctional DHFR-thymidylate synthase of the 
malaria parasite Plasmodium falciparum was derived from the experimental 
3D structures of human, chicken, Escherichia coli, and Lactobacillus casei 
DHFRs. Compounds with bifunctional basic groups, like amidines and 
guanidines, were extracted from the ACD, and the program GREEN was 
used to dock these compounds into the substrate binding site of the DHFR 
domain, under the constraint of an interaction of their basic group with 
Asp54. Among 32 candidates from docking and scoring, 21 were purchased 
and tested. Two compounds showed significant inhibitory activity, for example, 
compound 49 (Ki = 0.54 µM, IC50 = 1.4 µM; Fig. 16.7) [123].

In malaria chemotherapy, resistant parasites have significantly reduced the 
efficiency of classic antifolate drugs. In the search for novel inhibitors of  

2
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P. falciparum dihydrofolate reductase (PfDHFR), first 3D pharmacophores 
and other filters were used to reduce the number of potential candidates in a 
database of 230,000 ACD compounds to 4061 molecules. Docking of these 
“focused” compounds was performed with the program DOCK 3.5. Twelve 
compounds were identified that are structurally unrelated to known antifo-
lates; they inhibit not only wild-type PfDHFR but also different resistant 
mutants at micromolar concentrations. The most potent inhibitor was com-
pound 50 (Ki = 0.9 µM, Ki vs. the antifolate-resistant strains A16V, S108T, 
A16V+S108T, C59R+S108N+I164L, and N51I+C59R+S108N+I164L = 0.6–
2.1 µM; Fig. 16.7) [124].

An opportunistic infection with the fungus Pneumocystis carinii is the 
principal cause of mortality in HIV-infected patients. Inhibitors of P. carinii 
DHFR with selectivity against human DHFR were identified by docking 
53,328 compounds of the FCD (fine chemicals directory, a precursor of the 
ACD) into an unpublished 3D structure of the ternary complex of P. carinii 
DHFR with folate and NADPH, using the program DOCK. Of 2700 fitting 
compounds, 1266 were eliminated by energetic considerations. After two 
steps of chemical diversity selection the number of candidates was reduced 
to 89 compounds, of which 40 were ordered for biological testing. The most 
potent inhibitor was compound 51 (Ki = 6.9 µM; Fig. 16.7), with about 30-fold 
selectivity vs. human DHFR [125].

At Hoffmann-La Roche 5-N,N-disubstituted aminomethyl-2,4- 
diaminopyrimidines were designed and tested as Streptococcus pneumoniae 
DHFR inhibitors. A virtual library was generated by substituting 2,4- 
diaminopyrimidine with 9448 secondary amines, and two approaches were 
followed: (1) a diversity-oriented selection and (1) virtual screening by docking 
and scoring, using the program FlexX and a homology model that was con-
structed from the 3D structure of the closely related S. aureus DHFR. The 
FlexX scoring function was modified to penalize hydrogen bonds that are 
formed at the surface of the protein.

Significantly more hits and more active compounds were obtained from 
the structure-based library design than from diversity-based design (21% vs. 
3% hit rate). In general, the compounds showed high activity against trime-
thoprim (TMP)-sensitive and TMP-resistant S. pneumoniae DHFR. Some 
compounds were highly selective for the bacterial enzyme, as compared to 
the inhibition of the human enzyme, for example, the (R)-enantiomer of 
compound 52 (IC50 S. pn. DHFR = 9.8 nM, IC50 TMP-resistant S. pn. DHFR 
= 2.8 nM, IC50 human DHFR = 1.2 µM; Fig. 16.7) [126].

Inosine 5′-Monophosphate Dehydrogenase Inhibitors.  A series of 21 known 
inosine 5′-monophosphate dehydrogenase (IMPDH) inhibitors was used to 
validate a virtual screening protocol. By application of a molecular weight 
filter (80 < MW < 400), 3425 compounds were extracted from an in-house 
reagent inventory system. Docking of these compounds into a substrate-
IMPDH complex 3D structure was performed with the program FlexX; three 

ENZYMES� 401

Q1

c16.indd   401 2/28/2006   6:10:44 PM



402� SUCCESS STORIES OF COMPUTER-AIDED DESIGN

Q1

different scoring functions were tested, with and without conserved water 
molecules in the NAD cofactor binding site. The resulting 74 compounds gave 
a hit rate of 10% active compounds of diverse chemistry, for example, 
compounds 53 (IC50 = 31 µM; Fig. 16.7) and 54 (IC50 = 32 µM; Fig. 16.7) 
[127].

16.3.5  Other Enzymes

5-Aminoimidazole-4-Carboxamide Ribonucleotide Transformylase.  The 
NCI diversity library, a set of 1990 compounds with nonredundant 
pharmacophore profiles, was used for virtual screening of the human  
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase 
active site with the program AutoDock. Biological testing of 16 soluble 
compounds, out of 44 potential inhibitors, revealed eight micromolar inhibitors 
with novel scaffolds, for example, compound 55 (IC50 = 4.1 µM; Fig. 16.8). 
Docking of all compounds with similar scaffolds, from the entire NCI 3D 
database, yielded another 11 inhibitors, for example, compound 56 (Ki = 
154 nM, IC50 = 600 nM; Fig. 16.8) [128].

Carbonic Anhydrase II.  Carbonic anhydrases are metalloenzymes with a 
catalytically active Zn2+ ion in the catalytic center. Aromatic and other acidic 
sulfonamides bind as anions that form the warhead group of all carbonic 
anhydrase inhibitors. The experimental X-ray structure of carbonic anhydrase 
II was used for virtual screening of potential inhibitors. 3D structures were 
generated for 98,850 compounds of the Maybridge and LeadQuest compound 
collections. The binding pocket of carbonic anhydrase was investigated by the 
computer programs GRID, SuperStar, LUDI, and DrugScore. Hot spots 
obtained from these programs were converted into a pharmacophore model, 
and 2D and 3D searches were performed with the program Unity. The 
resulting 3314 structures were flexibly superimposed on the highly potent 
inhibitor dorzolamide, using the program FlexS. The best hits were docked 
as flexible ligands with the program FlexX. Binding affinities to carbonic 
anhydrase were estimated with the knowledge-based scoring function 
DrugScore, and the top ranking 13 molecules were biologically tested. Three 
inhibitors exhibited subnanomolar activity, for example, compounds 57 (IC50 
= 0.6 nM; Fig. 16.8) and 58 (IC50 = 0.8 nM; Fig. 16.8) [129, 130].

A search for even more potent carbonic anhydrase II inhibitors, by a 
Harvard University group in cooperation with Concurrent Pharmaceuticals 
(now Vitae Pharmaceuticals), started from the nanomolar inhibitor p-
H2NCO-C6H4-SO2NH2 (Kd = 120 nM). Derivatives of this base fragment, 
substituted at the carboxamido nitrogen atom, were generated in the binding 
site of the protein from 100 different small organic groups. The growth  
algorithm CombiSMoG (combinatorial small molecule generator) randomly 
selected fragments from this library and attached them to the growing ligand. 
The affinity of the generated ligands was estimated by the knowledge-based 
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CombiSMoG potential function, which was derived from 1000 protein-ligand 
complex 3D structures. After inspection of 100,000 candidates, the five best 
hits were ranked by a force field calculation. The (R)-isomer of the indole 
compound 59 (Kd = 30 pM; Fig. 16.8) is the highest-scoring compound and 
has the highest affinity of all synthesized molecules, whereas the (S)-isomer 
has only a Kd = 230 pM [131, 132].

DNA Gyrase.  After the failure to find DNA gyrase inhibitors by conventional 
screening of the Hoffmann-La Roche compound collection, Böhm et al. 
performed a virtual screening procedure, called “needle screening.” First, 
small “needle-type” molecules were selected from about 350,000 compounds 
of the ACD and part of the Roche compound inventory and docked into the 
DNA gyrase active site with the de novo design program LUDI. The resulting 
hits were then analyzed for their binding site interactions. About 200 
compounds were tested for DNA gyrase inhibition, and activities in the range 
of 5–64 µg/ml were obtained. X-ray structure analysis verified the proposed 
binding modes of an indazole, an aminotriazine, and a pyrrolopyrimidine 
lead structure. Compound 60 [maximal noneffective concentration (MNEC) 
= 0.03 µg/ml; Fig. 16.8] resulted after 3D structure-guided optimization 
[133].

dTDP-6-Deoxy-d-Xylo-4-Hexulose 3,5-Epimerase (RmlC).  dTDP-6-deoxy- 
d-xylo-4-hexulose 3,5-epimerase (RmlC) has been selected as a new promising 
target in the fight against tuberculosis. A virtual library of 2,3,5-trisubstituted 
thiazolidin-4-ones was generated from 24 amino acids, 27 aldehydes, and 2 
thioacids with the program CombiLibmaker, and the resulting 3888 structures 
(containing all possible stereoisomers) were docked into the active site of the 
enzyme with the program FlexX. After consensus scoring with the CScore 
module, the top 5% (= 144 compounds) were selected for synthesis and 
biological tests; 30 of 94 compounds had biological activities >50% at 20 µM, 
for example, compound 61 (100% inhibition at 20 µM;  
Fig. 16.8) [134].

Farnesyl Transferase.  A rigid docking of 219,390 ACD compounds into the 
binding site of farnesyl transferase was performed with the program EUDOC. 
Of 21 hits, four inhibited the enzyme with IC50 values in the range 25–100 µM. 
The most potent inhibitor, compound 62 (IC50 = 25 µM; Fig. 16.8), inhibited 
farnesyl transferase also in human lung cancer cells [135a]. A Catalyst 3D 
pharmacophore search of a Schering-Plough corporate database yielded five 
compounds with IC50 values smaller or equal to 5 µM, representing three 
different structural classes [135b].

Guanine Phosphoribosyl Transferase.  Guanine phosphoribosyl transferase 
(GPRT) is one of the enzymes of the purine salvage pathway, which is needed 
by protozoa because they lack the ability to synthesize purine nucleotides. 
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Two micromolar phthalimide GPRT inhibitors were identified by screening 
the in-house phthalimide library. On the basis of this result, a virtual library 
of substituted phthalimides was constructed and docked into the binding sites 
of six GPRTs from different sources, including Giardia lamblia, various 
trypanosomes, E. coli, and human with the program DOCK 4.01. Several 
micromolar inhibitors resulted, for example, compound 63 (Ki = 23 µM,  
IC50 = 52 µM; Fig. 16.8) [136].

HIV-1 Integrase.  Several 3D pharmacophore models were derived from 
known HIV-1 integrase inhibitors. These models were validated with a 3D 
database of 152 compounds with known integrase inhibitory activities. The 
most probable pharmacophore model was used as query for a 3D search of 
206,876 compounds of the NCI 3D database. From 340 hits 29 compounds 
were selected for biological tests, resulting in 10 novel, structurally diverse 
HIV-1 integrase inhibitors. Four of these had IC50 values <30 µM, for example, 
a salicylic acid derivative, which later turned out to be a mixture of two 
salicylic acid hydrazides, compounds 64 and 65 (IC50 3′-processing ~2.0 µM, 
IC50 strand transfer ~1.5 µM; Fig. 16.8) [137].

A pharmacophore hypothesis for HIV-1 integrase inhibitors was derived 
from four isosteric β-diketo integrase inhibitors by the HipHop module of 
Catalyst. A 3D search in a multiconformer Catalyst database of 150,000 
ChemBridge compounds yielded 1700 molecules that fitted a four-point phar-
macophore. Subsequently, the program GOLD 1.2 was used to dock the 
structures into the integrase binding site. Afterwards, the 200 top-scoring hits 
were visually inspected for their ability to chelate a metal ion, for structural 
novelty, and for compliance with the Lipinski rule of five. Finally, 110 mole-
cules were biologically tested, yielding 48 compounds with IC50 values from 
7 to 100 µM, for example, compound 66 (IC50 3′-processing = 17 µM, IC50 
strand transfer = 11 µM; Fig. 16.8). The most active compounds had a salicylic 
acid substituent and a 2-thioxo-thiazolidinone (rhodanine) scaffold. On  
the basis of a 2D substructure search for these moieties, another 22 com-
pounds were selected and tested, resulting in some more micromolar  
integrase inhibitors [138].

tRNA-Guanine Transglycosylase.  In the search for tRNA-guanine 
transglycosylase (TGT) inhibitors, 800,000 molecules from eight different 
databases were screened in a stepwise manner, using the programs Selector 
(to eliminate molecules with more than 7 rotatable bonds and a MW > 450), 
Unity for 3D pharmacophore search, and FlexX for flexible docking. About 
50% of all molecules were eliminated by the Selector procedure. Three 
different binding site-derived pharmacophore hypotheses were applied to 
perform 3D pharmacophore searches. This filter reduced the set of compounds 
to 20% of the original size. In the next step, volume constraints defined the 
shape of the binding site, producing a hit list of 872 compounds. After flexible 
docking into two different conformations of the enzyme, some other criteria 
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were applied, to end up with 9 compounds that were biologically tested. All 
had micromolar to submicromolar activities, for example, compound 67  
(Ki = 0.25 µM; Fig. 16.8) [139, 140].

16.4  ION CHANNELS

16.4.1  T-Type Selective Ca2+ Channel 

The T-type selective channel blocker lead structure mibefradil (IC50 = 1.2 µM) 
served as a template for virtual screening of the Hoffmann-La Roche in-
house compound collection. Several filters were applied, and the similarity of 
the candidates to the lead structure was compared by the CATS descriptor 
[89]. Because only pharmacophoric features and their topological distances 
describe the molecules, the CATS descriptor enables a “scaffold hopping”; 
that is, molecules with different scaffolds but comparable biological proper-
ties result from this approach. The 12 highest-ranking molecules were biologi-
cally tested; nine of them showed T-channel blocking activities in the same 
range as the lead structure mibefradil. Whereas one highly active compound 
was the known neuroleptic clopimozide 68 (IC50 < 1 µM; Fig. 16.9) [89], 
several other active hits, for example, compounds 69 (IC50 = 2.4 µM; Fig. 16.9) 
[63,141] and 70 (IC50 = 0.8 µM; Fig. 16.9) [141], are new chemotypes. Despite 
the topological pharmacophore similarity, the scaffolds of all compounds are 
significantly different from mibefradil.

16.4.2  Kv1.5 Potassium Channel 

A potent hKv1.5 potassium channel blocker from literature served as tem-
plate for a TOPAS (topology assigning system) de novo design [142]. The 
“scaffold hopping” program TOPAS starts from a collection of building 
blocks that are generated by retrosynthetic fragmentation of the World Drug 
Index (WDI). By using 11 chemical reactions of the RECAP procedure [143], 
24,563 unique building blocks were generated. After assembling new struc-
tures from various scaffolds and building blocks, an evolutionary algorithm 
selects the “fittest” molecules, that is, the ones that are most similar to the 
original template. Although the “most similar” compound 71a (R = OMe, 
IC50 = 7.34 µM; Fig. 16.9) is much less active than the template (IC50 = 0.11 µM), 
a close analog, compound 71b (R = H, IC50 = 0.47 µM) [142], has about the 
same order of biological activity (wrong substitution pattern in Scheme 1 of 
Ref. 142; see Scheme 2).

The same template as for compound 71 was used by Peukert et al. for a 
2D similarity search in the Aventis in-house compound collection [144]. 75 
Compounds with a similarity index >0.80 were biologically tested. The  
moderately active 1-carboxy,8-sulfonamido-naphthalene (IC50 = 9.5 µM), with 
insufficient chemical stability, was the starting point for the design of substi-
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Figure 16.9  Ion channel blockers from virtual screening.

tuted biphenyls, which after further optimization produced compound 72 
(IC50 = 0.16 µM; Fig. 16.9) [144].

An improved 3D pharmacophore, considering all results obtained so far, 
and a new 3D search in the Aventis compound collection with the program 
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Unity resulted in 4234 hits. After application of several filters and clustering 
of the remaining 1975 molecules, compounds from 18 of the 27 clusters were 
screened in Xenopus oocytes. One compound with an IC50 of 5.6 µM belonged 
to a new class of Kv1.5 blockers and exhibited a favorable pharmacokinetic 
profile. After further optimization, compound 73 (IC50 = 0.7 µM; Fig. 16.9) 
resulted, with good oral bioavailability in rats [145].

In a further investigation, the most interesting hits of the prior work were 
used together with other reference Kv1.5 channel blockers to perform virtual 
screening for new chemotypes. A protein-based pharmacophore for a 3D 
search was derived from a homology model of the potassium channel. The 
five most active hits from the corporate database had IC50 values between 0.9 
and 7.9 µM (structures not given) [146]. Whereas chemical similarity between 
these compounds, as measured by pairwise Tanimoto similarity based on 
Unity fingerprints, was low, feature tree similarity values, which measure 
pharmacophore similarity across chemically diverse classes, are high.

16.4.3  Shaker K+ Channel

Although a large number of drugs have their origin in natural products [147], 
databases of natural products are rarely used for virtual screening. A 3D 
homology model of the eukaryotic Shaker K+ channel was built from the 
known 3D structure of the KcsA potassium channel. The refined 3D model 
was used to dock more than 50,000 compounds of the China Natural Product 
Database (Shanghai Institute of Materia Medica, Chinese Academy of Sci-
ences, and Neotrident Technology Ltd.) with the program DOCK 4.0 into the 
extracellular tetraethylammonium (TEA) binding site. Of 14 hits, only four 
diterpenoid alkaloids from Aconitum leucostonum were accessible. Extracel-
lular application of the four compounds inhibited the delayed rectifier current 
(IK) at micromolar concentration, for example, 14-benzoyl-talatisamine 74 
(IC50 = 3.8 µM; Fig. 16.9) [148]. 

16.5  OTHER TARGETS; PROTEIN-PROTEIN AND  
PROTEIN-RNA INTERACTIONS

16.5.1  Bcl-2 Protein-Protein Interaction

Bcl-2 is one of the many factors that control apoptosis, and overexpression  
of Bcl-2 has been observed in many different cancers. A homology model of 
Bcl-2 was derived from the NMR 3D structure of the Bcl-XL complex with 
a Bak BH3 peptide. This model served to search the NCI 3D database of 
206,876 organic compounds for potential Bcl-2 inhibitors, which bind to the 
Bak BH3 binding site of Bcl-2. Full conformational flexibility of the ligands 
was taken into account in the program DOCK. Thirty-five potential inhibitors 
were tested, and seven of them had IC50 values from 1.6 to 14.0 µM. One of 
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the hits, compound 75 (Fig. 16.10), had the highest antiproliferative activity 
(IC50 = 10.4 µM) in the human myeloid leukemia cell line HL-60. Whereas 
compound 75 induced apoptosis in cancer cells with high Bcl-2 expression, it 
had only little effect on cancer cells with low or undetectable levels of Bcl-2 
[149].

16.5.2  Cyclophilin A 

The immunophilins cyclophilin A [CyPA; binds cyclosporin A (CsA)] and 
FK506-binding protein (FKBP12; binds FK506 and rapamycin) are peptid-
ylprolyl isomerases (PPIases, rotamases). However, it is the interaction of  
the drug-immunophilin complexes with the calcium/calmodulin-dependent 
protein phosphatase calcineurin (CsA/CyPA and FK506/FKBP12 complexes) 
and the serine/threonine kinase FRAP (rapamycin/FKBP12 complex) that 
is responsible for their immunosuppressive effects. A pharmacophore model 
for potential cyclophilin ligands was derived from cyclosporin and dipeptides 
that bind to CyPA. Compounds of the ACD, WDI, and Chapman-Hall Dic-
tionary of Organic Compounds were filtered to remove molecules with MW 
>700 and reactive compounds. Then 3D structures were generated with the 
program Concord, and a Unity 3D search was performed, using the cyclophilin 
ligand 3D pharmacophore. In the resulting hits a lead structure with IC50 = 
6 µM was identified. It served as the starting point for further chemical opti-
mization, from which several submicromolar CyPA inhibitors resulted, for 
example, compound 76 (IC50 = 930 nM; Fig. 16.10) [150]. 

16.5.3  FK 506-Binding Protein (FKBP12) 

FK506-binding proteins (FKBP) belong to the family of immunophilins. 
Together with their ligand FK506 and the serine/threonine phosphatase cal-
cineurin, they form ternary complexes that block signal transduction in T 
cells. A 3D version of the ACD and the 3D structures of the Cambridge 
Crystallographic Database (CCD) were docked into the binding pocket of 
FKBP with the program Sandock. Several hits bound with micromolar  
affinities, for example, the steroid compound 77 (Kd = 7 µM) and the spiro 
compound 78 (Kd = 11 µM); the dipeptide Z-L-Pro-L-Pro 79 had even sub-
micromolar affinity (Kd = 0.8 µM) (Fig. 16.10) [151].

16.5.4  HIV-1 RNA Transactivation Response Element

The binding of the HIV-1 transactivating regulatory protein (tat) to the RNA 
transactivation response element (TAR) is an essential step for HIV-1 replica-
tion. The ACD was screened for inhibitors of the tat-TAR protein-RNA 
interaction. A four-step procedure was used: Rigid docking was followed by 
three steps of flexible docking, using a stochastic torsional angle modification 
of the ligands. The procedure was validated by docking ligands of five RNA 
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Figure 16.10  Inhibitors of protein-protein and protein-RNA interactions from 
virtual screening.
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complexes of known structure and scoring them by an empirical function, 
which was derived from ligand-RNA complexes with known structure and 
affinity, accounting also for solvation and changes in conformational entropy. 
Screening of about 153,000 ACD compounds yielded high-ranking known 
TAR ligands, as well as new structures, for example, compound 80 (CD50  
≈ 1 µM; CD50 = competitive dose, concentration of compound required to 
reduce the binding of the tat protein to TAR to 50%; Fig. 16.10) [152].

16.5.5  Mesangial Cell Proliferation

Mesangial cell (MC) proliferation inhibitors were searched, using the HipHop 
module of the Catalyst software. A 3D pharmacophore model, consisting of 
two hydrophobic regions, two hydrophobic aromatic regions, and three hydro-
gen bond acceptors, was generated from a training set of heterocyclic phos-
phonic acid diethyl esters, using the Catalyst HipHop option. This model 
served as a 3D query to search 47,045 compounds of the Maybridge 3D data-
base. Among 41 structurally novel inhibitors with >50% inhibitory activity at 
100 nM, the most potent hit was compound 81 (90 % MC proliferation inhibi-
tion at 100 nM; Fig. 16.10) [153].

16.5.6  Rac1 Protein-Protein Interaction

Rac GTPase is involved in one of several signaling pathways mediated by Rho 
family GTPases. The 3D structure of a Rac1-Tiam1 complex was used to 
specify the binding pocket for inhibitors, and a flexible 3D search was per-
formed in 140,000 compounds of the NCI database with the program Unity. 
The hits of this search were flexibly docked with the program FlexX and 
ranked by the consensus scoring function CScore. By visual inspection, 58 of 
the 100 highest-scoring hits were eliminated because they did not show an 
interaction of the ligand with Trp56. Considering solubility and availability 
of the remaining compounds, finally 15 compounds were tested for their 
ability to inhibit the Rac1-binding interaction with its guanine nucleotide 
exchange factor (GEF) TrioN. Compound 82 (IC50 ≈ 50 µM; Fig. 16.10) was 
the only active and selective compound, significantly inhibiting TrioN binding 
to Rac1 but not interfering with Cdc42 binding to Intersectin. Also in cells it 
effectively inhibited Rac1 binding and activation, and in human prostate 
cancer PC-3 cells it inhibited proliferation [154].

16.5.7  VLA-4 (a4b1 Antigen)

A 3D model of the fibrinogen-derived (very late antigen-4, VLA-4) inhibitor 
4-[N′-(2-methylphenyl)ureido]phenylacetyl-Leu-Asp-Val was derived from 
the X-ray structure of the related integrin-binding region of the vascular cell 
adhesion molecule-1 (VCAM-1). A 3D pharmacophore was generated with 
the program Catalyst, and a 3D search was performed in 8624 molecules from 
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the ACD, containing either a free amino or a nitro group and a carboxyl 
group, in order to replace the tripeptide part of the inhibitor. All 12 selected 
molecules that passed additional filters inhibited the association of the α4β1 
antigen with VCAM-1. The most potent analog, compound 83, had an IC50 = 
1.3 nM (Fig. 16.10) [155].

16.6  SUMMARY AND CONCLUSIONS

Virtual screening comprises several computational techniques that have 
already shown their efficiency in delivering interesting lead structures. In the 
most effective application, cascades of different steps serve to reduce very 
rapidly the number of potential candidates from hundreds of thousands or 
even millions of structures to a manageable size, for example, by first applying 
simple filters (molecular weight, polar surface area, number of rotatable 
bonds, Lipinski rule of five, lead-likeness rules, drug-likeness neural nets), 
followed by pharmacophore generation and pharmacophore searches. The 
number of potential candidates can be reduced by a filter that checks the 
presence of all necessary pharmacophoric features. The generation of a phar-
macophore hypothesis can be ligand based or may be derived from the protein 
3D structure (if available) by a hot spot analysis (programs GRID [11, 156], 
LUDI [35], DrugScore [49, 157, 158]). Ligand-based pharmacophore genera-
tion is most often performed with the HipHop and HypoGen options of the 
program Catalyst [159–163]. LigandScout is a new program for the automated 
generation of pharmacophore hypotheses from 3D structures of protein-
ligand complexes [164]. Finally, a 2D (topological) or 3D pharmacophore 
search is performed. The CATS descriptor [89] and the feature trees [165, 
166] are extremely fast and effective search tools for pharmacophore similar-
ity, very often producing active hits with new scaffolds. For 3D searches the 
programs Catalyst [e.g., 78, 81, 82, 88, 91, 104, 115, 138, 153, 155] and Unity 
[e.g., 78, 122, 139, 140, 145, 146, 150, 154, 167] are most often used.

If a 3D structure of the target is available from protein crystallography or 
NMR studies, or can be modeled by homology, the last step, using flexible 
docking and scoring, is more time demanding. For docking, the programs 
most commonly used in the success stories described in this review are DOCK 
[34, 168], in several different versions [96, 102, 103, 107, 112, 116, 117, 119, 
121, 124, 125, 136, 148, 149], and FlexX and FlexX-Pharm [86, 87, 95, 97, 118, 
122, 126, 127, 129, 130, 134, 139, 140, 154, 169–171]. Stepwise virtual screening 
protocols have been applied in several examples described in this review [e.g., 
78, 86, 87, 95, 97, 106, 122, 124, 129, 130, 139, 140]. A surprisingly large 
number of successful docking studies used a homology model of the respec-
tive protein [78, 79, 86, 87, 92–94, 100, 103, 106, 112, 123, 148, 149].

As discussed in the introduction, scoring functions still pose problems (see 
also Chapter 14). Some of these problems arise from insufficient consider-
ation of details of favorable and unfavorable protein-ligand interactions, 
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whereas others are more systematic in their nature, for example, the overpre-
diction of the affinity of large molecules [56, 102, 122] and the overprediction 
of the affinity contribution of hydrogen bonds at the solvent-accessible surface 
of the protein [126]. Thus a visual inspection of the docking results [e.g., 93–
95, 97, 100, 103, 106, 120, 122, 138, 154] is of utmost importance, to check for 
unfavorable geometry of the docked ligand, geometric complementarity, for 
example, space filling of hydrophobic pockets, key interactions with the 
protein (which is the key option of the program Flex-Pharm), and unfavorable 
electrostatic interactions, for example, oxygen-oxygen repulsion. Of course, 
synthetic accessibility or commercial availability and certain physicochemical 
properties, such as solubility, are also critically important for the selection of 
candidates for biological screening.

Although some virtual screening hits described in this review, do not look 
very druglike, for example, compounds 47, 50, 51 (Fig. 16.7), 56, 62 (Fig. 16.8), 
and 75 (Fig. 16.10), several other compounds have already been optimized to 
interesting candidates for further development. It must be kept in mind that 
ligand-based and 3D structure-based approaches enable only ligand design, 
not drug design. In the future, computer programs for virtual screening not 
only should aim at the further improvement of the scoring functions but 
should consider also synthetic accessibility and allow the construction of 
ligands with chemically reasonable fragment-based approaches.
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